
Corn Nitrogen Rate Calculator

Impact of Nitrogen Application Timing on Corn Production

> John E. Sawyer Daniel W. Barker John P. Lundvall Department of Agronomy Iowa State University

IOWA STATE UNIVERSITY Extension and Outreach

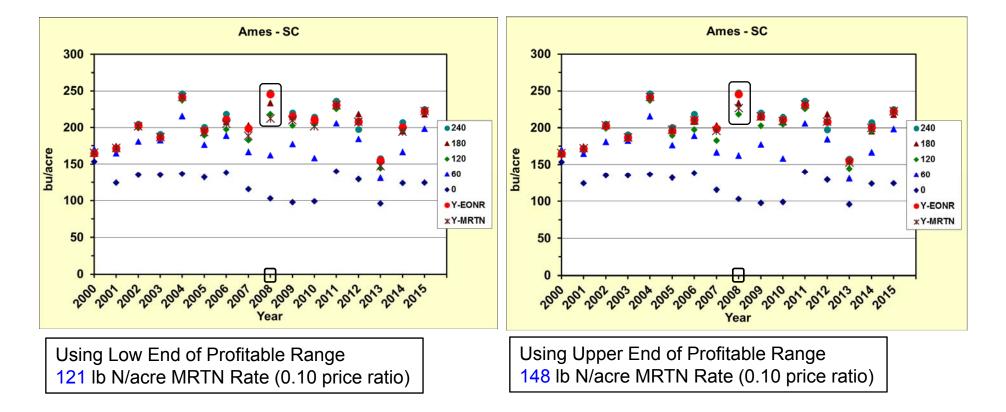
Copyright I lowa State University Agronomy Extension and Outreach 2016

IOWA STATE UNIVERSITY Extension and Outreach

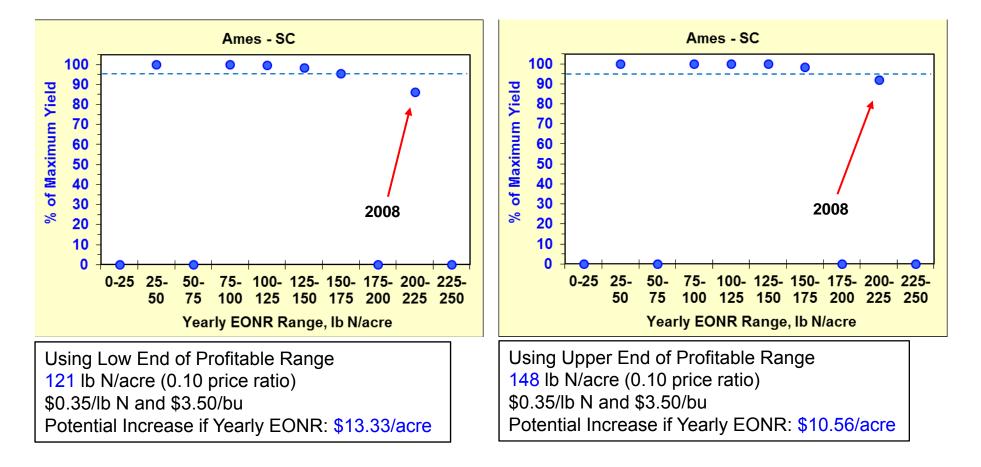
http://cnrc.agron.iastate.edu/

Corn Nitrogen Rate Calculator Main Iowa Area

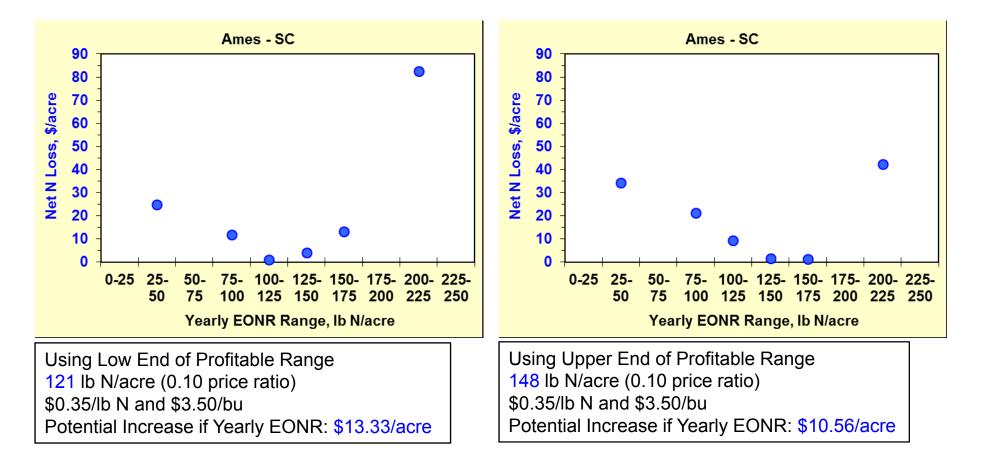
Rates and Charts

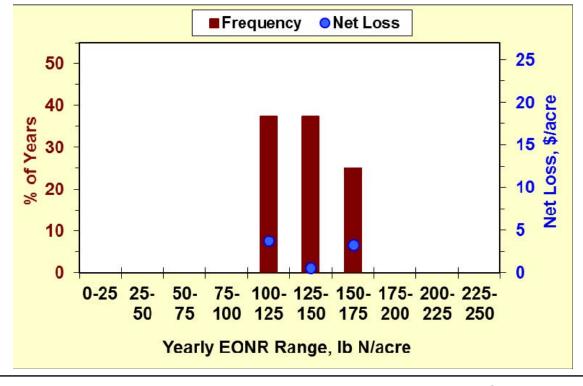

State: 1	Iowa
----------	------

Region: Main


Number of sites: 204 Rotation: Corn Following Soybean

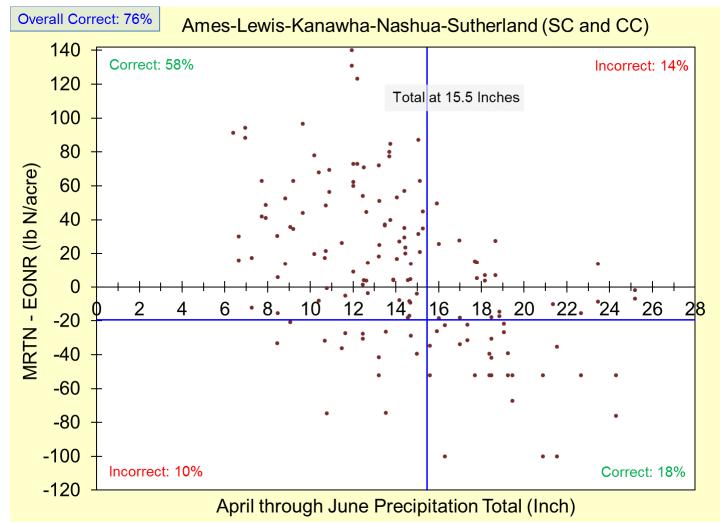
Nitrogen Price (\$/lb):	0.35
Corn Price (\$/bu):	3.50
Price Ratio:	0.10
MRTN Rate (lb N/acre):	134
Profitable N Rate Range (lb N/acre):	121 - 148
Net Return to N at MRTN Rate (\$/acre):	\$174.47
Percent of Maximum Yield at MRTN Rate:	99%
Anhydrous Ammonia (82% N) at MRTN Rate (lb product/acre):	163
Anhydrous Ammonia (82% N) Cost at MRTN Rate (\$/acre):	\$46.90


Comparison of Low and Upper End of Profitable N Rate Range Ames (Clarion Loam) SC (2000-2015)


Comparison of Low and Upper End of Profitable N Rate Range Ames (Clarion Loam) SC (2000-2015)

Comparison of Low and Upper End of Profitable N Rate Range (and Dealing with Extremes) Ames (Clarion Loam) SC (2000-2015)

Extremes in Nitrogen Response are Important Ames (Clarion Loam) SC (2000-2015)



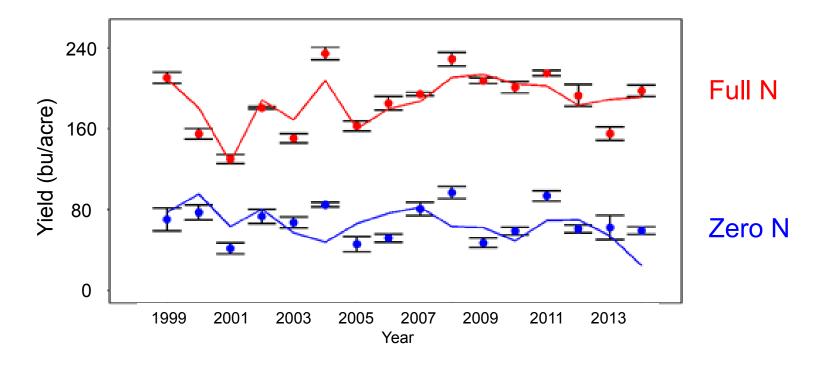
Years within ± 25 lb N/acre range (109-159 lb N/acre) of the MRTN at 134 lb N/acre (0.10 price ratio) \$0.35/lb N and \$3.50/bu Potential Increase if Used Yearly EONR Instead of MRTN: \$2.44/acre

10 of 16 years within 109-159 lb N/acre range.

J.E. Sawyer, ISU

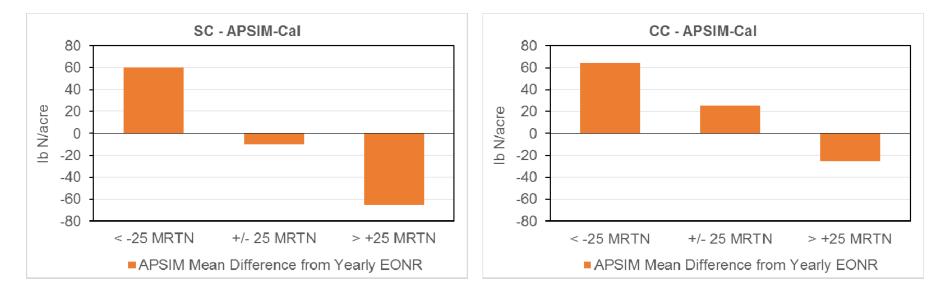
Spring Precipitation as a Tool for Decisions About Additional Nitrogen Application (Main Iowa)

The APSIM Model Agricultural Production Systems slMulator


A model is a computer program that integrates scientific knowledge in the form of mathematical equations and attempts to represent a real world system.

APSIM is a modular processbased model for simulating agricultural systems.

ISU development/evaluation for optimal N-rate prediction in corn.



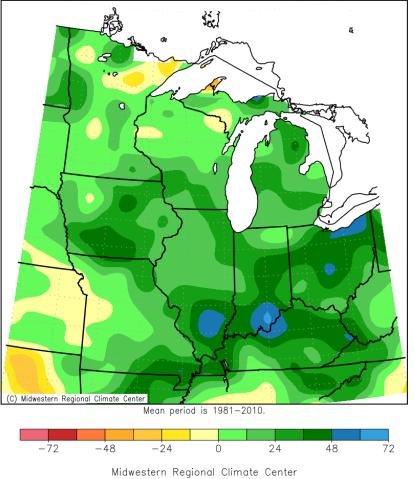
APSIM Modelling Corn Yield Across N Rates Initial Evaluation of Model Performance (Ames Site CC)

Puntel et al., 2016 Frontier Plant Science

APSIM Modelling Optimal N Rate Initial Evaluation (Ames Site SC and CC)

When Yearly EONR Is Within One of these Three N Rate Categories How Well Does APSIM Hit the Yearly EONR Extremes?

Impact of Nitrogen Application Timing on Corn Production


John E. Sawyer Daniel W. Barker John P. Lundvall Department of Agronomy Iowa State University

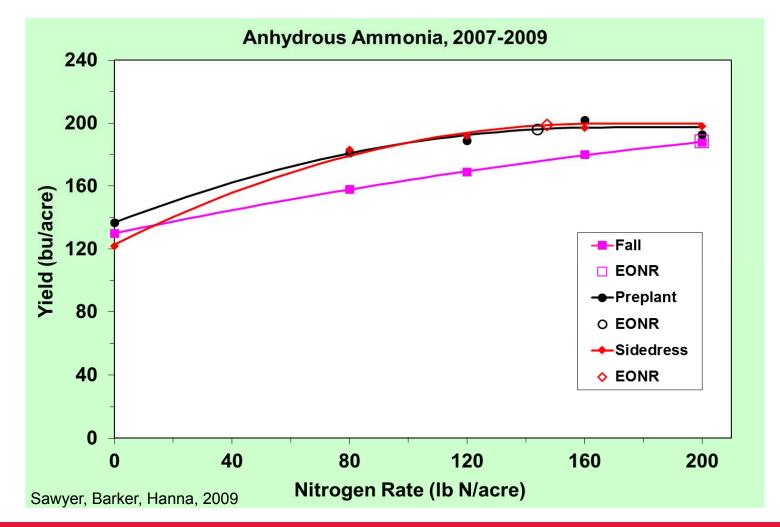
Nitrogen Application Timing Studies

- Nine studies in 2004-2016
- Seventy one site-years
- Nitrogen application timings
 - Fall, spring preplant, at planting, split/sidedress, mid-vegetative, late-vegetative
- Question?
 - Nutrient reduction strategy and 4R management
 - > 4% yield increase fall to spring preplant
 - > 0% yield increase spring preplant to sidedress

2004-2015 High Precipitation Period

Accumulated Precipitation (in): Departure from Mean January 1, 2004 to December 31, 2015

cli-MATE: MRCC Application Tools Environment Generated at: 10/18/2016 11:00:13 AM CDT

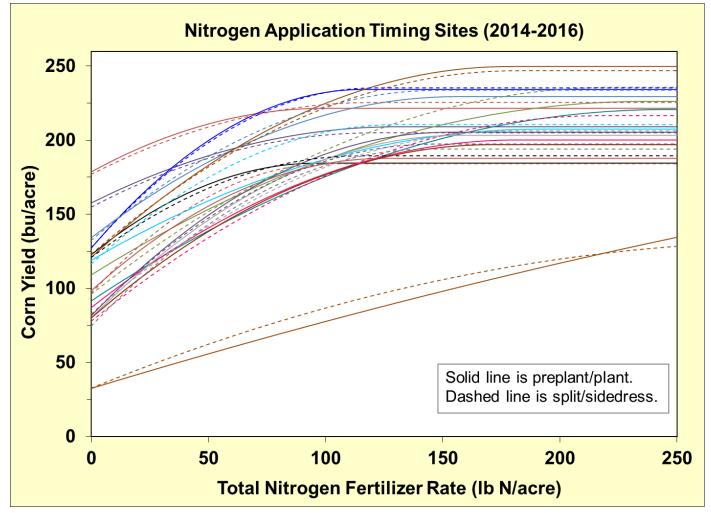

IOWA STATE UNIVERSITY Extension and Outreach

J.E. Sawyer, ISU

Anhydrous Ammonia Timing Study

- Late fall (< 50°F), spring preplant (mid-April to mid-May) & split/sidedress (V2-V4 corn stage, early-mid June)
- Five N rates
- No nitrification inhibitor
- Corn following soybean
- Three years (2007-2009)
- Ames

Preplant and Split/Sidedress Anhydrous Ammonia



IOWA STATE UNIVERSITY Extension and Outreach

Springtime Timing Studies

- Spring preplant or at-planting & split/sidedress
- Sidedress at V4 V9 corn growth stage
- Six to eight N rates
- UAN, urea, ammonium nitrate
- Corn following soybean
- Three years (2014-2016)
- Fourteen site-years across Iowa

Preplant or At-Planting and Split/Sidedress

Sawyer, Lundvall, Hall, Barker 2014-2016.

IOWA STATE UNIVERSITY Extension and Outreach

Preplant or At-Planting and Split/Sidedress

	Mean EONR		Mean YEONR	
Sites	Pre	Split	Pre	Split
	Ib N/acre		bu/acre	
4	167	138	202	201
3	108	126	203	206
7	151	147	221	221
14	146	140	212	212
1	250*	250*	134	129
	4 3 7 14 1	Sites Pre Sites Pre Ib N/ 4 167 3 108 7 151 14 146 1 250*	Sites Pre Split Ib N-acre 4 167 138 3 108 126 7 151 147 14 146 140	Sites Pre Split Pre Ib N Ib N Ib N Ib N 4 167 138 202 3 108 126 203 7 151 147 221 14 146 140 212 1 250* 250* 134

Based on N response equations and 0.10 N:corn price ratio. Sawyer, Lundvall, Hall, and Barker, 2014-2016.

In-Season Sensor-Based Project

- Spring preplant or early sidedress (Pre-N)
- In-season mid- to late-vegetative SPAD meterbased high clearance (Post-sensing N)
- Four Pre-N rates plus sensor-based N
- UAN Post-sensing N product
- Corn following soybean
- Three years (2004-2006)
- Thirty on-farm sites across lowa with fieldlength strips

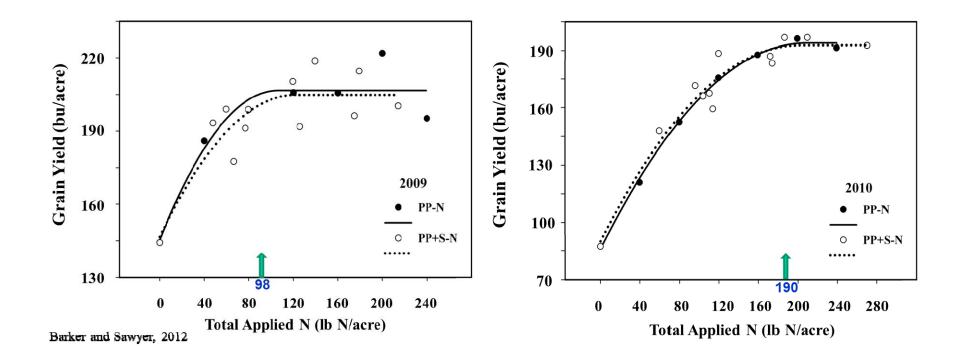
N Applied Pre and Post-Sensing

		Number of Sites		
N Application	Mean	with Post-Sensing	Relative	Mean
Treatment	Total N Applied [†]	N Applied	CM Value	Yield [‡]
	lb N/acre	n		bu/acre
0	0		0.82	141d
60	60		0.93	177c
60+	115	28		185b
120	120		0.97	192a
120+	131	9		193a
240	240		1.00	197a

Sum of Pre-N and Post-sensing N rate, averaged across all 30 SC sites.

[‡] Mean yields are not significantly different when followed by the same letter $(P \le 0.10)$.

Hawkins, Lundvall, Sawyer, 2006


IOWA STATE UNIVERSITY Extension and Outreach

EONR(0.10) for Pre-N rates = 132 lb N/acre

Mid-Vegetative Sensor-Based Timing Study

- Spring preplant urea (PP-N)
- Mid-vegetative (V10 stage) active canopy sensor-based application (PP+S-N)
- Seven PP-N rates plus sensor-based N
- UAN Post-sensing N product
- Corn following soybean
- Two years (2009-2010)
- Central Iowa, new site each year

N Applied Preplant and Mid-Vegetative Based on Canopy Sensing

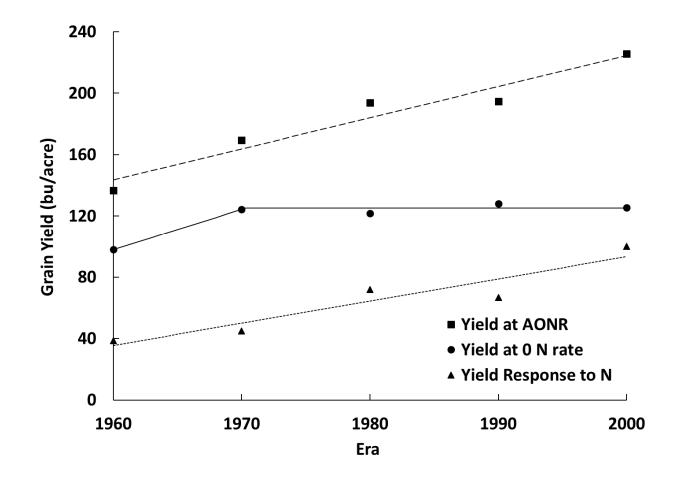
Mid-Vegetative Sensor-Based Demonstration

- Preplant N Rate (PP-N)
 - Farmer rate and product (Fall, Sp, Split, NH₃, NS, UAN)
- Preplant + In-Season Fixed Rate (PP+F-N)
 - Farmer rate + 100 lb urea/acre (46 lb N)
- Preplant + In-Season Sensor Rate (PP+S-N)
 - Farmer rate + 3 potential sensor-based rates
 - Un-calibrated NDVI (no relative index)
 - 1) ≥0.85 no N; 2) 0.85-0.50 100 lb urea/acre (46 lb N);
 3) <0.50 150 lb urea/acre (70 lb N)
 - Sensor-based N applied June 28–30, 2011

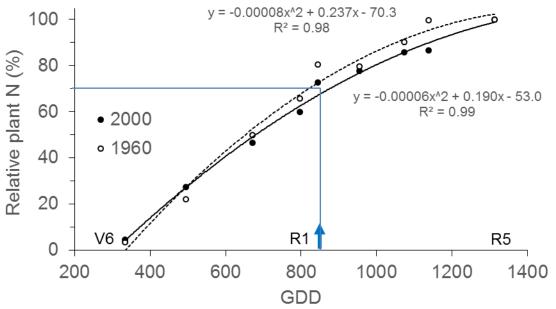
Multiple fields

Sensor-Based Demonstration SC

Application	1	2	3	4	5	6	
PP-N	218	213	211	212	212	198	
PP+F-N	217	214	199	194	223	193	
PP+S-N	219	206	209	222	205	198	
Sign. (0.05)	NS	NS	NS	NS	NS	NS	
				lb N/acre			
PP-N	159	161	160	160	160	160	
PP+F-N	205	206	205	205	205	205	
PP+S-N	209	212	208	209	206	210	
NDVI	0.699	0.674	0.691	0.693	0.703	0.682	
Barker and Sawyer, 2011							


Time of Nitrogen Application Summary

- Fall anhydrous ammonia less efficient than spring or split/sidedress
- Generally, little difference in corn yield or EONR between springtime N application timing; preplant, split/sidedress, or mid-vegetative
- If a springtime timing difference, not consistent between preplant and sidedress
- Even in extremely wet and N responsive conditions, similar corn yield and EONR
- Split applications are okay / application options


Why Little Spring Timing Difference?

- Not sandy (coarse textured) soils
- Soil organic matter mineralization
- Soil inorganic-N loss in wet springs makes sites more N responsive
- Applied N (fertilizer) loss if applied preplant, at-planting, or sidedress
 - Late spring or summer wet periods
- Less corn response to late applied N
- Corn N uptake timing has not changed

Why No Spring Timing Difference? Era Hybrid Comparison Study (2007-2008)

Why No Spring Timing Difference? Era Hybrid Comparison Study (2007-2008)

	Era		
	1960	2000	
GY (bu/acre)	134b	224a	
Total N uptake at R6 (lb/acre)	159b	190a	
Grain N (lb/acre)	113b	138a	
Grain (bu/lb N)	1.03b	1.42a	
Grain N Concentration (%)	1.61a	1.23b	