Nitrogen Management Products

John E. Sawyer
Professor
Soil Fertility Extension Specialist
Department of Agronomy

IOWA STATE UNIVERSITY
Extension and Outreach
Major Nitrogen Fertilizer Product Consumption in Iowa

- Major N Products
- Ammonia
- UAN Solution
- Urea
- DAP & MAP

Data Source, IDALS

IOWA STATE UNIVERSITY
Extension and Outreach

J. E. Sawyer -- Agronomy Extension
Ammonia Synthesis

- **Natural Gas**
 - Source of energy
 - Source of H₂
 - \(\text{CH}_4 + \text{H}_2\text{O} = \text{CO} + 3 \text{H}_2 \)
 - \(\text{CH}_4 + 2 \text{H}_2\text{O} = \text{CO}_2 + 4 \text{H}_2 \)
 - Remove CO and CO₂

- **Atmosphere**
 - Source of N₂ (33,000 tons N₂ in air over every acre)

- **Haber-Bosch Process**
 - \(3 \text{H}_2 + \text{N}_2 = 2 \text{NH}_3 \)
Energy - Producing Nitrogen Fertilizer

- For each ton of ammonia production
 - 26,000 cu ft natural gas
 - 82% for feedstock (hydrogen source)
 - 18% for fuel (heat)
 - Net energy requirement is 30 million BTU per ton N = 15,000 BTU per lb N

- Conversion of ammonia to other N products requires additional energy
 - Urea = 18,000 BTU per lb N
 - UAN = 16,000 BTU per lb N

Energy -- Using Nitrogen Fertilizer

-	Transportation	Application
Ammonia	1,100	1,000
Urea	2,000	300

- Total per 100 lb N/acre (diesel fuel equivalent)
 - Ammonia: 12 gal
 - Urea: 15 gal

Hoeft and Siemens, 1975
Daily Natural Gas Futures Price (NYMEX) - Henry Hub

Data Source: Energy Information Administration, DOE
Nitrogen Fertilizer Manufacture

- Nitrogen fertilizers originate from anhydrous ammonia
 - Urea
 - Ammonia + Carbon Dioxide
 - Ammonium Nitrate
 - Ammonia + Nitric Acid
 - Urea - Ammonium Nitrate Solutions
 - Urea + Ammonium Nitrate + Water + Ammonia
 - 32% and diluted 28%
Nitrogen Fertilizer Manufacture

Nitrogen fertilizers originate from anhydrous ammonia

- Ammonium Sulfate
 - Ammonia + Sulfuric Acid
 - Industrial by-product; coal coke ovens, lysine manufacture, nylon manufacture

- Aqua Ammonia
 - Ammonia dissolved in water

- Ammoniated Phosphates - DAP, MAP
 - Ammoniation of phosphoric acid
Nitrogen Fertilizer Manufacture

- Nitrogen fertilizers originate from anhydrous ammonia
 - Ammonium Polyphosphate
 - Solutions (10-34-0, 11-37-0)
 - Ammonia + superphosphoric acid + water
 - Dry (12-58-0, 15-61-0)
 - Ammonia + superphosphoric acid
Anhydrous Ammonia

Advantages

- Historically least expensive N source
- High N analysis
- Dealer system / equipment
- Slower nitrification
- Use with nitrification inhibitor
- Preferred fall N application source
- Non-leachable in soil immediately after application

\[\text{NH}_3 + \text{H}_2\text{O} = \text{NH}_4 + \text{OH} \]
Anhydrous Ammonia Field Application

- Requires Injection
 - Depth and soil moisture to retain ammonia
 - For corn -- 20 to 40 inch knife spacing
 - For small grains -- 15 inch or narrower knife spacing
 - Skip row spacing
 - Sidedress
 - Preplant with GPS guidance
Anhydrous Ammonia Band

pH in Highest NH₄-N Zone

120 lb N/acre as Ammonia -- 40 inch rows applied Nov. 19
McIntosh and Frederick, 1958 ISU - Ames, IA -- Nicollet SCL

Initial Soil pH = 6.9
Urea
Field Application

- Urea Hydrolysis
 - When urea surface applied
 - Formation of NH$_3$ allows volatile loss
 - Up to 20-30% loss under high loss conditions
 - When urea banded or starter with seed
 - Plant damage may occur because of ammonia toxicity
 - pH in the 7 to 9 range for 1 to 3 weeks
Urea Band

Soil Solution pH and NH$_4$-N

60 lb N/acre as Banded Urea -- Incubated at 75 F
Isensee and Walsh, 1971; Griswold Loam, pH 7.1
UAN Solutions

Properties

- Mix of urea and ammonium nitrate
- 28% (32%) UAN composition by weight
 - 39.3% (44.3%) Am. Nitrate
 - 30.6% (35.4%) Urea
 - 20.1% (20.3%) water
 - 0.1% Ammonium Hydroxide
 - 10.7 lb/gal (11.0) at 60°F
 - Salt out temperature -1°F (28°F)
 - Biuret 0.4%
Direct Measured Ammonia Loss from Surface Application in No-till

<table>
<thead>
<tr>
<th>Source</th>
<th>1992</th>
<th>1993</th>
<th>1994</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea</td>
<td>34.6 a</td>
<td>29.4 a</td>
<td>42.3 a</td>
<td>29.5</td>
</tr>
<tr>
<td>UAN-Spray</td>
<td>16.8 a</td>
<td>19.6 b</td>
<td>21.6 b</td>
<td>16.1</td>
</tr>
<tr>
<td>UAN-Dribble</td>
<td>14.6 a</td>
<td>15.3 b</td>
<td>16.9 b</td>
<td>12.9</td>
</tr>
</tbody>
</table>

Fox et al., 1996 SSSAJ 60:596-601.
120 lb N/acre rate surface applied to silt loam soils in May.
Impact of N Source and Placement on No-Till Corn Yield

4-yr average C-S rotation (1995-1998) at Belleville, IL
140 lb N/acre; May preplant or weed & feed split (40 lb N bcst - 100 sidedress)
Broadcast Postemergence UAN Application to Corn

- **UAN**
- **Potential for foliage burn**
- **Limit applications:**
 - Up to 90 lb N/acre at V3 to V4 stage corn
 - Up to 60 lb N/acre at V7 stage corn
 - None if larger than V7 stage
 (Randall, Univ. of Minnesota 1984)
 - Herbicides -- consult label, lower UAN rate
Ammonium Sulfate

Properties

- \((\text{NH}_4)_2\text{SO}_4\)
- 21% N; 24% S
- White crystalline solid
- Dry solid granules
- Very soluble in water
- Non-Volatile
- Highest acidifying effect of N fertilizers
 - Adds about $0.02 per pound of N on acid soils
Other N Fertilizers

- Urea forms
 - Coated
 - Sulfur, polyurethane, semi-permeable
 - Urea-formaldehyde
 - Methylene urea
 - Thiourea
 - IBDU - Isobutylidene diurea