Nitrogen Management Products

John E. Sawyer Professor Soil Fertility Extension Specialist Department of Agronomy

> IOWA STATE UNIVERSITY Extension and Outreach

IOWA STATE UNIVERSITY Extension and Outreach

J. E. Sawyer -- Agronomy Extension

Ammonia Synthesis

Natural Gas
Source of energy
Source of H₂
CH₄ + H₂O = CO + 3 H₂
CH₄ + 2 H₂O = CO₂ + 4 H₂
Remove CO and CO₂
Atmosphere
Source of N₂ (33,000 tons N₂ in air over every acre)

• Haber-Bosch Process $3H_2 + N_2 = 2 NH_3$

Energy - Producing Nitrogen Fertilizer

- For each ton of ammonia production
 - *26,000 cu ft natural gas
 - 82% for feedstock (hydrogen source)
 - 18% for fuel (heat)
 - Net energy requirement is 30 million BTU per ton N = 15,000 BTU per lb N
- Conversion of ammonia to other N products requires additional energy
 - Urea = 18,000 BTU per lb N
 - UAN = 16,000 BTU per lb N

Source: G. Kongshaug, 1998 (T. Jenssen amended, 2003)

Energy	Energy Using Nitrogen Fertiliz				
•	Transportation	Application			
	BTU/lb N				
Ammonia	1,100	1,000			
Urea	2,000	300			

Total per 100 lb N/acre (diesel fuel equivalent)
 Ammonia 12 gal
 Urea 15 gal

Source: G. Kongshaug, 1998 (T. Jenssen amended, 2003) Hoeft and Siemens, 1975

J. E. Sawyer -- Agronomy Extension

Nitrogen Fertilizer Manufacture

 Nitrogen fertilizers originate from anhydrous ammonia

♦ Urea

- Ammonia + Carbon Dioxide
- Ammonium Nitrate
 - Ammonia + Nitric Acid
- Urea Ammonium Nitrate Solutions
 - Urea + Ammonium Nitrate + Water + Ammonia
 - 32% and diluted 28%

Nitrogen Fertilizer Manufacture

- Nitrogen fertilizers originate from anhydrous ammonia
 - Ammonium Sulfate
 - Ammonia + Sulfuric Acid
 - Industrial by-product; coal coke ovens, lysine manufacture, nylon manufacture
 - Aqua Ammonia
 - Ammonia dissolved in water
 - Ammoniated Phosphates DAP, MAP
 - Ammoniation of phosphoric acid

Nitrogen Fertilizer Manufacture

- Nitrogen fertilizers originate from anhydrous ammonia
 - Ammonium Polyphosphate
 - Solutions (10-34-0, 11-37-0)
 - Ammonia + superphosphoric acid + water
 - Dry (12-58-0, 15-61-0)
 - Ammonia + superphosphoric acid

Anhydrous Ammonia

Advantages

- Historically least expensive N source
- High N analysis
- Dealer system / equipment
- Slower nitrification
- Use with nitrification inhibitor
- Preferred fall N application source
- Non-leachable in soil immediately after application

 $\blacksquare NH_3 + H_2O = NH_4 + OH$

Anhydrous Ammonia Field Application

- Requires Injection
 - Depth and soil moisture to retain ammonia
 - For corn -- 20 to 40 inch knife spacing
 - For small grains -- 15 inch or narrower knife spacing
 - Skip row spacing
 - Sidedress
 - Preplant with GPS guidance

Anhydrous Ammonia Band pH in Highest NH₄-N Zone

120 lb N/acre as Ammonia -- 40 inch rows applied Nov. 19 McIntosh and Frederick, 1958 ISU - Ames, IA -- Nicollet SCL

Urea Field Application

- Urea Hydrolysis
 - When urea surface applied
 - Formation of NH₃ allows volatile loss
 - Up to 20-30% loss under high loss conditions
 - When urea banded or starter with seed
 - Plant damage may occur because of ammonia toxicity
 - pH in the 7 to 9 range for 1 to 3 weeks

Urea Band Soil Solution pH and NH₄-N

60 lb N/acre as Banded Urea -- Incubated at 75 F Isensee and Walsh, 1971; Griswold Loam, pH 7.1

UAN Solutions Properties

- Mix of urea and ammonium nitrate
- 28% (32%) UAN composition by weight
 - * 39.3% (44.3%) Am. Nitrate
 - * 30.6% (35.4%) Urea
 - *20.1% (20.3%) water
 - 0.1% Ammonium Hydroxide
 - *10.7 lb/gal (11.0) at 60° F
 - Salt out temperature -1°F (28°F)
 - ✤ Biuret 0.4%

Direct Measured Ammonia Loss from Surface Application in No-till

		Year			
Source	1992	1993	1994	Average	
		b/acre		%	
Urea	34.6 a	29.4 a	42.3 a	29.5	
UAN-Spray	16.8 a	19.6 b	21.6 b	16.1	
UAN-Dribble	14.6 a	15.3 b	16.9 b	12.9	
Fox et al., 1996 SSSAJ 60:596-601. 120 lb N/acre rate surface applied to silt loam soils in May.					

Impact of N Source and Placement on No-Till Corn Yield

4-yr average C-S rotation (1995-1998) at Belleville, IL 140 lb N/acre; May preplant or weed & feed split (40 lb N bcst - 100 sidedress)

IOWA STATE UNIVERSITY Extension and Outreach

Broadcast Postemergence UAN Application to Corn

• UAN

- Potential for foliage burn
- Limit applications:
 - * Up to 90 lb N/acre at V3 to V4 stage corn
 - ✤ Up to 60 lb N/acre at V7 stage corn
 - None if larger than V7 stage (Randall, Univ. of Minnesota 1984)
 - Herbicides -- consult label, lower UAN rate

Ammonium Sulfate Properties

- $(NH_4)_2SO_4$
- 21% N; 24% S
- White crystalline solid
- Dry solid granules
- Very soluble in water
- Non-Volatile
- Highest acidifying effect of N fertilizers
 Adds about \$0.02 per pound of N on acid soils

Other N Fertilizers

• Urea forms

- Coated
 - Sulfur, polyurethane, semi-permeable
- Urea-formaldehyde
- Methylene urea
- Thiourea
- IBDU Isobutylidene diurea