North Central Regional Research Publication No. 342

Evaluation of Soil Nitrate Tests for Predicting Corn Nitrogen Response in the North Central Region

L.G. Bundy, D.T. Walters, and A.E. Olness

Agricultural Experiment Stations of:

Illinois

Missouri

Indiana

Nebraska

lowa

North Dakota

Kansas

Ohio

Michigan

South Dakota

Minnesota

Wisconsin

and the U.S. Department of Agriculture, cooperating

Wisconsin Agricultural Experiment Station College of Agricultural and Life Sciences University of Wisconsin-Madison

March 1999

Evaluation of Soil Nitrate Tests for Predicting Corn Nitrogen Response in the North Central Region—CONTRIBUTORS

Larry G. Bundy

Department of Soil Science Univ. of Wisconsin-Madison 1525 Observatory Drive Madison, WI 53706-1299 TEL: 608-263-2889

FAX: 608-265-2595 lgbundy@facstaff.wisc.edu

Donald J. Eckert

School of Natural Resources The Ohio State University 2021 Coffey Road Columbus, OH 43210-1085 TEL: 614-292-9048 FAX: 614-292-7432

FAX: 614-292-7432 eckert.1@osu.edu

Boyd G. Ellis

Dept. of Crop & Soil Sciences 286 Plant & Soil Sciences Michigan State University East Lansing, M1 48824-1325 TEL: 517-355-0271

FAX: 517-353-5174 ellis@pilot.msu.edu

Ron Gelderman

Plant Science Department South Dakota State University Brookings, SD 57007 TEL: 605-688-4770

Gary Hergert

West Central Res. & Ext. Ctr. University of Nebraska Route 4, Box 46A North Platte, NE 69101-9495 TEL: 308-532-3611 ghergert1@unl.edu

Robert G. Hoeft

Department of Crop Science University of Illinois 1102 S. Goodwin Ave. Urbana, IL 61801-4798 TEL: 217-333-4424 FAX: 217-333-5299 rhoeft@uiuc.edu Brad C. Joern

Department of Agronomy Purdue University 1150 Lilly Hall West Lafayette, IN 47907-1150 TEL: 765-494-9767 FAX: 765-496-1368

bjoern@dept.agry.purdue.edu

Randy J. Killorn

Department of Agronomy Iowa State University 2104 Agronomy Hall Ames, 1A 50011-0001 TEL: 515-294-1923 FAX: 515-294-9985 rkillom@iastate.edu

Jack Meisinger

USDA-ARS, Environ. Chem. Lab. Beltsville Agric. Res. Ctr. 10300 Baltimore Ave. Beltsville, MD 20705-2350 TEL: 301-504-5276 FAX: 301-504-5048 jmeising@asrr.arsusda.gov

Alan Olness

USDA-ARS-MWA NC Soil Conserv. Res. Lab. 803 Iowa Avenue Morris, MN 56267-1065 TEL: 612-589-3411 (EXT. 31) FAX: 612-589-3787 aolness@mail.mrsars.usda.gov

Lyle Prunty

Department of Soil Science 147 Walster Hall North Dakota State University Fargo, ND 58105 TEL: 701-231-8580 FAX: 701-231-7861 prunty@plains.nodak.edu

Gyles W. Randall

Southern Experiment Station University of Minnesota 35838 120 TH Street Waseca, MN 56093-4521 TEL: 507-835-3620 FAX: 507-835-3622 grandall@soils.umn.edu Charles W. Rice

Department of Agronomy
Throckmorton Plant Sciences Ctr.
Kansas State University
Manhattan, KS 66506-5501
TEL: 913-532-7217
FAX: 913-532-6094
cwrice@ksu.edu

Don H. Sander

Department of Agronomy
University of Nebraska-Lincoln
P.O. Box 830915
Lincoln, NE 68583-0915
TEL: 402-472-1501
FAX: 402-472-7904
AGRO282@univm.unl.edu

Michael Schmitt

Dept. of Soil, Water & Climate University of Minnesota 1991 Upper Buford Circle St. Paul, MN 55108-6028 TEL: 612-625-7017 FAX: 612-625-2208 mschmitt@soils.umn.edu

M. Ali Tabatabai

Department of Agronomy Iowa State University Ames, IA 50011-1010 TEL: 515-294-7848 FAX: 515-294-3136 malit@iastate.edu

Maurice L. Vitosh

Dept. of Crop & Soil Sciences 280 Plant & Soil Sciences Michigan State University East Lansing, MI 48824-1325 TEL: 517-355-0212 FAX: 517-353-5174 vitosh@msue.msu.edu

Daniel T. Walters

Department of Agronomy
University of Nebraska-Lincoln
261 Plant Sci. Hall, East Campus
P.O. Box 803915
Lincoln, NE 68583-0915
TEL: 402-472-1506
FAX: 402-472-7904
agro084@unlvm.unl.edu

North Central Regional Research Publication No. 342

Evaluation of Soil Nitrate Tests for Predicting Corn Nitrogen Response in the North Central Region

L.G. Bundy, D.T. Walters, and A.E. Olness

Also available at: www.soils.wisc.edu/extension/soilnitrate.pdf

Sponsored by the agricultural experiment stations of Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota and Wisconsin and the U.S. Department of Agriculture, Agricultural Research Service.

This publication was prepared by the North Central Regional Committee NC-201, Nutrient Management to Sustain Productivity While Protecting Surface and Groundwater Quality. Members of the committee are listed on the inside front cover.

The research was funded by the North Central Regional Association (NCRA) of Agricultural Experiment Station Directors. The NCRA is one of four regional associations with responsibility for facilitating cooperation of regional and national research. The research is supported in part by the Regional Research Fund (RRF), which is a federal appropriation authorized by the Hatch Act. Additional support comes from other federal programs as well as state and private sources. The research program focuses on regional priorities that are identified and developed jointly by State Agricultural Experiment Station (SAES) Directors, Departmental Chairs and participating scientists. More information on the NCRA is available at http://www.wisc.edu/ncra.

For information on the availability of copies of this publication contact:

Larry Bundy
Dept. of Soil Science
University of Wisconsin-Madison
1525 Observatory Dr.
Madison, WI 53706-1299
phone: (608) 263-2889
fax: (608) 265-2595

labundy@facstaff.wisc.edu

EVALUATION OF SOIL NITRATE TESTS FOR PREDICTING CORN NITROGEN RESPONSE IN THE NORTH CENTRAL REGION

L.G. Bundy, D.T. Walters, and A.E. Olness

INTRODUCTION

Although soil nitrate (NO₃) tests are widely used in low rainfall areas of the North Central Region, development and implementation of effective soil NO₃ tests throughout the Great Plains and Midwest could improve agronomic efficiency of nitrogen (N) and reduce potential water quality problems associated with N use on cropland. Consequently, a North Central Regional Research Committee (NC-201 Nutrient Management to Sustain Productivity while Protecting Surface and Ground Water Quality) initiated a core experiment to provide a regional evaluation of soil NO3 tests. Soil NO3 tests have potential for more accurately predicting corn response to applied N than yield-based or soil-specific N recommendation procedures alone, because they can account for plant-available N that is not included in most N recommendation methods. Specifically, preplant soil NO3 tests measure residual or carryover NO₃-N from N use in previous years. Other sampling approaches, such as the presidedress soil NO3 test (PSNT) can estimate the amounts of organic N that will become available to the crop during the growing season from sources such as soil organic matter, manure, and legume crop residues.

One of the objectives of the NC-201 Regional Committee was to determine the applicability of various times and depths of soil sampling for NO₃-N testing, including the PSNT, and to develop complementary means for predicting crop N needs which will protect surface and ground water quality. This regional publication on use of soil NO₃ tests in the North Central Region reports the results of the committee's research on this subject. The goal of the regional project was to evaluate soil NO₃ tests for identifying N responsive or non-responsive sites, but not to calibrate the soil NO₃ tests for making N fertilizer recommendations.

SUMMARY OF PREVIOUS WORK AND JUSTIFICATION

Although preplant soil NO₃ tests have a long history of successful use in semi-arid regions of the Western and Great Plains region of the United States (Hergert, 1987), effective soil NO₃-N tests are also

needed in humid regions of the USA (Bock and Kelley, 1992). One of the most promising approaches to NO, testing in the higher rainfall areas of the Midwest and Eastern states is use of the presidedress soil NO₃ test (PSNT) (Magdoff et al., 1984). Research conducted in the humid regions of the United States (Magdoff et al., 1984; 1990; Magdoff, 1991; Blackmer et al., 1989; Fox et al., 1989) suggests that the PSNT is effective for predicting com response to applied N and that the critical value for the test (20 to 25 ppm N) is relatively uniform across a wide geographical area (Table 1). In addition, several recent studies in humid regions (Bundy and Malone, 1988; Roth and Fox, 1990; Liang et al., 1991) have confirmed earlier work showing that residual NO3 can remain in the profiles of medium- to fine-textured soils during the overwinter period and may contribute available N to subsequent crops. Therefore, preplant soil NO₃ tests (PPNT) have also been developed and implemented for use in predicting crop N response and need for applied N in humid regions (Bundy et al., 1992; Schmitt and Randall, 1994; Bundy and Andraski, 1995). Methods for using soil NO3 tests to predict corn N needs have been summarized by Bundy and Meisinger (1994), and N recommendations based on the results of these tests are provided in extension publications in states where NO3 tests are used.

Research to improve N management for corn in the North Central Region is justified by the importance of the region in national and world com production and by the substantial usage of fertilizer N in the region. Most fertilizer N used in the United States is applied to corn which receives an average of about 128 lb of N per acre (Daberkow and Taylor, 1993). From 1990 through 1992, about 74.1 million acres of corn were grown and about 7.64 billion bushels of grain were produced annually in the North Central United States (Table 2; USDA, 1992). The 12 states in this area produced 87% of the total corn grain on 83% of the total acreage devoted to corn production (USDA, 1992; Fig. 1). Thus, we estimate that at least 4 million tons of N fertilizer are applied each year at a cost of between \$600 to \$800 million for corn production within the 12-state area. The estimates exclude manure applications and N fixed by legumes used in crop rotations; so, the estimate of 128 lb N applied per acre of corn is a conservative value. Other sources (Keeney and Follett, 1991) provide somewhat higher estimates of N use in the North Central Region (6.0 million tons of N). The trend in N fertilizer use for corn production has been one of increasing intensity since about 1945. The corresponding trend in grain yield in the North Central Region has been also increasing by about 1.1% per year over the last 20 yr (USDA, 1974 and 1992; Table 2).

MATERIALS AND METHODS

Corn yield and soil NO₃-N data were collected from 307 sites across the North Central Region over a 5-yr period from 1988-92 (Fig. 1). Numerical values in Fig. 1 indicate the number of site-years of data collected at the same general geographic location, but experiments were never located on the same plots for more than 1 yr. The complete database for the project is shown in Appendix Table 1. Sites included a variety of soil and climatic characteristics and previous cropping and manure management practices (Table 3). Variables associated with the research sites as well as parameters such as time and

depth of sampling were evaluated with respect to their effect on the prediction of corn response to N fertilizer application. A common research protocol described below was used by all cooperators in the regional project.

Treatment Specifications

An adapted corn hybrid was grown using recommended production practices except for N fertilization. Treatments included a no-N check plot and a "non-N limiting" treatment to assure an adequate N supply for the crop. The non-N limiting treatment was based on N response functions determined at the site or local university N recommendations. The check and non-N limiting treatments were replicated at least four times. Where starter fertilizer N or manure was applied, the same amount of N from these sources was applied to both the check and non-N limiting treatments. Starter fertilizer N additions were limited to 15 lb N/acre. Sites were selected to minimize the effects of previous site management by using only those locations where both the check and non-N limiting plots received the same N management for at least 1 yr before use in this study.

Table 1. Summary of PSNT calibration studies and test performance in the USA.

Location	Critical value	% correct†	Low PV‡ in RR	Reference
	ppm NO ₃ -N			
Delevers	17	70	π e	Sims et al. (1995)
Delaware Iowa	20-25			Blackmer et al. (1989)
Maryland	22		Yes	Meisinger et al. (1992)
New York	21	84	Yes	Klausner et al. (1993)
Northeast USA	18		••	Magdoff et al. (1990)
Pennsylvania	21	89	Yes	Fox et al. (1989)
Wisconsin	21	73		Bundy and Andraski (1995)

[†] Correct identification of N responsive sites (%).

[‡] Locations reporting low predictive value (PV) in the PSNT responsive range (RR).

Figure 1. Locations of experimental sites in the North Central Region, 1988-1992. (Numerical values indicate multiple site-years of data from one location.)

Soil Sampling and Analysis

Spring preplant soil samples were taken in 1-ft depth increments to a depth of 2 ft from the check treatment. Each soil sample consisted of a composite of at least eight cores per plot. Presidedress soil samples were taken from the same plots using identical procedures when corn plants were about 1 ft tall, measured to the top of the crop canopy. Samples were rapidly air-dried or frozen before analysis to avoid changes in inorganic N content. Nitrate-N and exchangeable ammonium-N (optional) in the samples were determined using accepted analytical procedures (Keeney and Nelson, 1982). Routine soil tests for extractable K, available P (Bray and Kurtz-1), water pH, and soil organic matter content were performed on surface soil samples (0 to 6- to 0- to 8-inch depth) from each site (Dahnke, 1988).

Site Characteristics

A 3-yr site history including previous crops, rate and source of applied N, N application method during the previous year, manure application rate, method of incorporation, and estimated available N content, and tillage method and timing was compiled for each site. Soil characteristics including series name, surface texture, drainage class and use of tile drainage, parent material, topographic position, limitations to root growth or water movement within 6 ft of the surface, depth to water table, routine soil tests and soil organic matter or organic C content were recorded. Weekly total precipitation was measured during the period between preplant and preside-dress soil sample collection, and daily minimum and maximum temperatures were obtained from the nearest weather station.

Plant Data

Planting date, plant density, and corn hybrid were recorded for each location. Grain yields were determined in at least four replications of the check (no N) and non-N limiting treatments by harvesting a minimum of 20 ft of row from each plot. Grain moisture at harvest was determined, and yields were reported at 15.5% moisture.

Relative Yield Calculation

Relative yield (RY) in the control treatment at each site was calculated by dividing the mean check plot yield by the mean yield obtained in the non-N limiting treatment and expressing the result as a percent of the non-N limiting treatment yield. Therefore, a high RY indicates little or no response to N, while a low RY reflects a N responsive site.

Data Analysis

Data from all cooperators were compiled and summarized for each year. The relationships between relative yield and soil NO₃-N content were determined with Proc NLIN techniques (SAS Institute Inc., 1985) using the linear-response plateau (LRP) and quadratic-response plateau (QRP) models. These segmented model techniques allowed an estimate of the critical soil NO₃ level (CSNL) for different sampling times, sampling depths and previous management. The CSNL represents the concentration of soil NO₃-N above which no crop yield response to additional N is expected. The adequacy of the LRP or QRP model fit was assessed by calculating the R² and testing normality of residuals using the Shapiro-Wilk test (DeLong and Yuan, 1988).

Table 2. Three-year average corn production in the North Central United States. †

10010 21	Tindo your average as			% 0	f USA
Year	Total acreage‡	Grain production	Average yield§	Acreage	Production
	million acres	billion bushels	bushels/acre		
1971 to 1973	70.9	5.62	110	80	87
1990 to 1992	74.1	7.64	134	83	87

[†] Source: USDA Agricultural Statistics (1974 and 1993).

¹ Including corn grown for silage.

[§] Excluding corn grown for silage.

Table 3. Regression equations (LRP and QRP) and critical soil NO₃-N levels for corn grown following several cropping systems, 1988 through 1992.

				Linear-response plateau (LRP)	plateau (LRP)		Ouadratic-response plateau (ORP)	plateau (ORP	
Previous crop or cropping system	Time of sampling	Soil depth	ء	Equation†	Critical soil NO ₃ -N level	Plateau yield	Equation	Critical soil NO ₃ -N level	Plateau yield
		ш			шdd	%		mdd	%
All observations	PPNT	0-1	292		15.7	97.9	$RY = 64.8 + 2.98N - 0.067N^2$		98.0
	PSNT	0-7 0-1	301	KY = 62.8 + 3.28N RY = 57.9 + 2.34N	9.3 16.9	93.3 97.4	$RY = 61.9 + 4.10N - 0.120N^2$ $RY = 52.3 + 3.81N - 0.079N^2$	16.7	96.1 98.1
	! }	0-5	239	RY = 48.0 + 4.02N	12.0	96.2	H		97.9
Corn (with and	PPNT	0-1	146	RY = 65.8 + 1.77N	17.8	97.3	ll l	29.4	99.4
without manure)	(;	0-5	145	П	15.8	97.2	$RY = 58.6 + 3.68N - 0.088N^2$		97.0
	PSNI	0-1 0-1	144 75 75	RY = 55.5 + 2.22N RY = 48.8 + 3.40N	19.0	97.7 97.4	$RY = 42.2 + 3.68N - 0.070N^2$ $RY = 43.3 + 5.19N - 0.120N^2$	26.4 21.3	97.9
		, ,	701	•	<u>:</u>	t		6.12	70.0
Com (without	PPNT	0-1	127	RY = 64.8 = 1.71N	19.2	97.0	$RY = 62.8 + 2.30N - 0.037N^2$	31.4	0.66
manure in study		0-5	126	RY = 62.0 + 2.17N	16.1	6.96	$RY = 55.4 + 4.11N - 0.106N^2$	19.3	95.1
year)	PSNT	0-1	125	= 54.7 +	18.9	2.96		26.3	6'96
		0-2	115	RY = 48.2 + 3.40N	14.2	5.96	$RY = 42.2 + 5.33N - 0.128N^2$	20.8	7.76
Continuous com	PPNT	0-1	74	RY = 61.9 + 1.83N	18.0	94.8	$RY = 60.6 + 2.30N - 0.033N^2$	34.9	100.7
(no manure for		0-5	73	RY = 57.5 + 2.68N	13.5	93.7	$RY = 52.3 + 4.50N - 0.120N^2$	18.4	93.8
3+ years)	PSNT	<u>0-1</u>	72	= 54.8	18.9	92.6	jj		95.0
		0-5	29	RY = 43.8 + 3.93N	12.6	93.3	$RY = 38.0 + 6.00N - 0.160N^2$	19.3	6.56
Second-year com	PPNT	0-1	23	RY = 73.1 + 1.46N	19.3	101.3	$RY = 69.5 + 2.35N - 0.044N^2$	26.8	100.9
following alfalfa		0-5	23	11	15.2	100.0	$RY = 66.4 + 3.11N - 0.071N^2$	21.7	100.2
•	PSNT	0-1	23	II	19.3	0.86	= 57.7 + 2.54N		100.9
		0-2	23	RY = 64.7 + 1.84N	19.8	101.1	$RY = 47.3 + 4.73N - 0.110N^2$		100.2
Soybean	PPNT	0-1	80		Lackin	lios hgh g	Lacking high soil NO ₃ -N/nonresponsive sites		
	!	0-5	80		Lackin	g high soil	Lacking high soil NO ₃ -N/nonresponsive sites		
	PSNT	0-1 2-2	% %	RY = 64.1 + 1.93N	17.0 I ackin	96.9 2 high goil	1 0 96.9 RY = 59.1 + 3.19N \cdot 0.067N ²	23.7	6.96
		7	3		LACKIII	g iiigii soii	1403-14/HOLICSPONSIVE SILES		

Table 3. (continued).

			:	Linear-response plateau (LRP)	plateau (LRP)		Quadratic-response plateau (QRP)	plateau (ORP	
Previous crop or cropping system	Time of sampling	Soil depth	c	Equation†	Critical soil NO ₃ -N level	Plateau yield	Equation	Critical soil NO ₃ -N level	Plateau yield
		Œ			шdd	%		udd	%
All cites with	TNdd	<u>-</u>	28	RY = 71.4 + 2.52N	11.0	99.1	$RY = 60.0 + 6.04N - 0.233N^2$	13.0	99.2
manure in the	1 - -	0-7	78	RY = 75.6 + 2.02N	12.2	100.2	$RY = 70.0 + 3.93N - 0.129N^2$		6.66
chidy wear	TNSd	<u>-</u>	29	RY = 69.7 + 1.82N	16.6	6.66	$RY = 45.1 + 8.03N - 0.304N^2$		98.1
study year		0-5	5 4	RY = 82.5 + 0.83N	22.4	101.1	$RY = 78.4 + 1.59N - 0.028N^2$		100.9
Small grain	TNdd	1-0	25	$R\dot{Y} = 56.4 + 2.90N$	16.0	102.8	$RY = 54.6 + 3.80N - 0.069N^2$	1.72	107.2
Oillail Brain	1 - - - -	0-5	25	RY = 56.9 + 3.39N	13.0	101.0	$RY = 55.1 + 4.50N - 0.105N^2$		103.1
	PSNT	0-1	25	RY = 53.0 + 3.32N	12.8	95.5	$RY = 50.1 + 4.60N - 0.115N^2$		96.3
		0-2	13	RY = 56.6 + 3.43N	11.2	95.0	$RY = 55.8 + 4.20N - 0.105N^2$	19.9	97.6

† RY = relative grain yield; N = soil NO3-N concentration.

Soil Test Failure Rate

Criteria for selecting statistical models used to derive the CSNL are not clearly defined and rarely provide a means of evaluating the relative impact of the chosen CSNL on the environment or farm economics (Cerrato and Blackmer, 1990; Sander et al., 1994). Frequently, the superiority of one response model could not be established using R² values or the results of the Shapiro-Wilk test. A separate approach, the soil NO₃ test failure rate, was developed to evaluate the effects of sampling time, sampling depth, and the appropriateness of CSNL determined by the LRP and QRP models. In this approach, each site was classified as either responsive or nonresponsive based on RY levels in the unfertilized treatment. If RY was greater than 90%, the site was considered nonresponsive. Choosing a RY closer to 100% generally lowered the failure rate but reduced the discriminating power of this statistic. For example, a higher RY value would result in more sites being identified as responsive, thus more sites would receive a recommendation for N fertilization. A soil NO₃ testing strategy was considered a failure if: (i) the soil NO₃ test \geq CSNL and RY \leq 90% (i.e., the test predicted a non-N-responsive site, but the site actually responded to N fertilization), a TYPE A failure; or (ii) the soil NO₃ test < CSNL and RY > 90% (i.e., the test predicted a N-responsive site, but the site did not respond to N fertilization), a TYPE B failure.

Assessing the failure rate of each soil NO₃ testing approach evaluated provided a practical tool for selecting the most useful soil NO₃ sampling strategies. TYPE A failures represent an economic loss to producers caused by reduced yields, while a TYPE B failure results in economic loss from excess fertilizer application and increases the risk of groundwater and surface water contamination with NO₃. The failure rate statistic allowed evaluation of soil NO₃ test performance in specific crop and soil management situations.

CHARACTERIZATION OF THE REGION AND DATABASE

Climatic Characterization of the Region

The 12 states in the North Central Region represent a broad range of climatic conditions that affect crop production and the behavior and management of N. Normal annual total precipitation ranges from more than 44 inches in the southeastern part of the region to less than 16 inches on the western border of the region (NOAA, 1983). Consequently, average annual potential percolation below the root zone in well-drained soils planted to corn (Stewart et al., 1975) ranges from 7 inches in the

eastern part of the region to 1 inch in the western (Great Plains) portion of the region. Normal daily average temperatures in July range from less than 65°F in the extreme northern part of the region to more than 82°F in south central Kansas. Similarly, normal daily average temperatures in January range from less than 5°F in northern North Dakota and Minnesota to about 35°F along the southern border of the region (NOAA, 1983).

Characterization of the Database

Locations and data for the individual research sites in the region that comprised the database used in this study are shown in Fig. 1 and Appendix Table 1. Characteristics of the experimental sites are summarized in Fig. 2, which shows the frequency of soil test values for extractable K, available P (Bray and Kurtz-1), water pH, and soil organic matter content. Frequencies of surface soil texture and drainage classes as well as tillage and manure history are also illustrated in Fig. 2. The parameters in Fig. 2 were provided for most sites, but data from a few sites were incomplete with regard to one or more of the characteristics shown in Fig. 2.

Distributions of soil test P and K values were strongly skewed toward values approximating those usually considered optimum for corn production. Cooperators were encouraged to use sites with adequate soil P and K levels for corn, and this criteria was usually met. Median values for soil test K and P were about 195 and 42 ppm, respectively, while the corresponding average values for these tests were about 238 and 51 ppm. The soil test P distribution excludes 10 values obtained using the sodium bicarbonate extraction test (Olsen) on sites with pH values of at least 7.5 in North Dakota and Minnesota. The interpretation of these tests usually indicated a low relative P availability.

Most experimental sites had medium-textured surface soils in the loam or silt loam textural classes (Fig. 2). Since most of the corn acreage in the region is located on medium-textured soils, the textural makeup of the database is typical of the production situation. The data-base also includes a substantial number of sites on coarse-textured soils (sands, loamy sands, and sandy loams) and on fine-textured soils (clay loams, silty clay loams, and clays).

Drainage characteristics of the experimental sites were separated into five classes, ranging from excessively to poorly drained. Only seven sites on coarse-textured soils in Minnesota and Kansas were classified as excessively drained. The distribution of the remaining sites among the drainage classes indicates that most were located on well-drained to

moderately well-drained soils which is a reasonable approximation of the drainage characteristics of land used for corn production in the 12-state region.

Five tillage systems were used at the experimental sites (Fig. 2). Chisel plowing, moldboard plowing, and disking were the predominant tillage methods. Disking was often the primary tillage where corn followed soybean (about 2/3 of the disking observations). No-till corn was grown on 50 sites with 26 of these having silt- or silt loam-textured soils, and 10 additional sites were following soybean. No-till production on medium-textured soils or where the previous crop was soybean is considered more likely to be successful than on sites with fine-textured soils with large amounts of residue.

Manure was applied in the study year or within the previous 2 yr at 54 sites (Fig. 2). Of the sites with manure histories, 29 received manure in the study year and nine of these sites also had histories of manure additions during the previous 2 yr. Other sites had histories of manure additions only during the 2 yr preceding the study year.

RESULTS AND DISCUSSION

Of the 307 sites included in the database, 56% had relative yield (RY) values ≤ 90%, and were considered responsive to N fertilization. The frequency of N responsive sites varied with previous crop and manure application history (Tables 4 and 5). Where

corn was the previous crop, 59% of the sites had RY values ≤ 90%, while sites with a previous soybean or small grain crop were 67 and 71% N responsive, respectively. None of the sites having a previous crop of alfalfa responded to N fertilization. The N responsiveness of sites usually increased with time since the most recent manure application (Table 5).

Regression equations using LRP and QRP models and the corresponding CSNL for preplant and presidedress soil NO₃ tests are shown in Table 3 for the previous crop categories included in the core experiment database. Most of the studies were done where the previous crop was corn, alfalfa, or soybean with a smaller number of locations following small grains.

Model Selection and CSNL Determination

Table 6 lists a comparison of test statistics and failure rates for the LRP and QRP models applied to all observations. The relationships between CSNL and TYPE A and TYPE B failures for the LRP model are illustrated in Fig. 3 for the PPNT and PSNT at two sampling depths. Soil NO₃-N critical levels were approximately 7 ppm lower for the LRP model.

However, R² and Shapiro-Wilk statistics did not provide sufficient criteria for choosing an overall critical level of all observations. Total failure rate was 3 to almost 8% lower for the LRP model, which resulted primarily from a reduction in TYPE B failures. Choosing the lower CSNL associated with the LRP would result in less risk of environmental contamination from excess NO₃-N; however, it would

Table 4. Effect of previous crop on the frequency of N-responsive sites with ≤ 90% relative yield in the control treatment, 1988-1992.

	Relativ	ve yjeld	
Previous crop	≤ 90%	>90%	% Responsive sites
	no. of	observations	
Corn	88	61	59
Soybean	58	28	67
Small grains	17	7	7 1
Alfalfa	0	28	0
Other	7	7	50
Total	170	131	56

Table 5. Effect of manure history on the percentage of sites with ≤90% relative yield (RY) in the control treatment for all observations and where previous crop was corn, 1988-1992.

		Previous crop
Manure history	Com	All observations
		% of sites ≤ 90% RY
No manure for at least 3 yr	69	62
Applied 2 yr prior to study year	40	50
Applied 1 yr prior to study year	36	31
Applied study year	26	31
, ,		

Table 6	omnarison of li	near-platea	iu (LRP)	Table 6 Commarison of linear-plateau (LRP) and quadratic-plateau (QRP) model performance (all observations), 1988-1992.	u (QRP) model	performanc	e (all ob	servation	1s), 1988	1-1992.				
Table 0.	i vo iloci moi ilo			Shaniro-Wilkt			Relativ	Relative grain yield	ield		Probability		Failed soil test‡	
Lime of	denth	Model R ²	. R	test	CSNL	-	Mean	Мах.	ے خ	S.D.	of RY>90%	TOTAL	TYPEA	TYPE B
Sumpring	the state of the s			Prob < W	mdd			%-					% of sites -	
PPNT	0 - 1	LRP	0.21	0.0001	>15.7	30	86		77	7.1	0.9	36.3	1.0	35.3
		QRP	0.22	0.0001	<15.7 >22.3 <22.3	262 15 277	81 81 81	108 107 108	27 27	3.9 17.8	0.39 1.0 0.42	39.4	0	39.4
TNdd	0-2	LRP	0.24	0.0001	> 9.3	96	93	108	39	11.9	0.68	29.5	8.9	22.6
<u>:</u>		QRP	0.24	0.0001	< 9.3 >16.7 <16.7	202 27 265	78 98 81	105 107 108	27 27 27	18.2 7.3 17.9	0.32 0.85 0.38	37.0	0.7	36.3
PSNT	0 - 1	LRP	0.41	9.0000	>16.9	99	86	107	99	6.9	0.84	27.6	2.3	25.2
		QRP	0.41	0.0004	<16.9 >24.0 <24.0	235 39 262	8 8 3	108 108	27 27	5.7 17.6	0.87 0.36	33.2	0.7	32.7
PSNT	0 -2	LRP	0.50	0.0072	>12.0	17.	96	107	96	7.9	0.82	22.6	4.6	0.81
		QRP	0.50	0.0340	<12.0 >17.9 <17.9	162 44 195	2 8 9	107	27 27	7.9	0.89 0.34	28.8	0.8	28.0

†The Shapiro-Wilk test statistic for the null hypothesis that the residual values (relative yields observed minus relative yields predicted by the model) are a random sample from a normal distribution, with a Prob value < 0.10 leading to rejection of the null hypothesis.

‡ TYPE A failure = Soil NO₃-N ≥ CSNL and RY ≤ 90%; TYPE B failure = Soil NO₃-N <CSNL and RY > 90%.

failures using the linear-response plateau model with the preplant (PPNT) and presidedress (PSNT) NO_3 tests at two sampling depths. TYPE A failure = Soil $NO_3 > 1$ Figure 3. Relationships between the critical soil NO3 level (CSNL) and TYPE A and TYPE B test CSNL and RY < 90%; TYPE B failure = Soil NO₃-N < CSNL and RY > 90%.

also result in a modest increase in TYPE A failures. This is also reflected in a lower probability of non-responsive sites above the LRP model CSNL. The CSNL values associated with the LRP and QRP models for the PSNT sampling time (Table 6) are similar to the range of CSNL values reported by others (Table 1). Based on the lower overall failure rate with the LRP CSNL, the LRP model was selected for all subsequent evaluations of NO₃ test performance.

Effect of Sample Depth

Increasing sampling depth from 1 to 2 ft did not improve the fit of either the LRP or QRP model, but the CSNL values were lower at the 2-ft depth (Table 6). This finding is consistent with results from other studies showing lower critical soil NO3-N concentrations when sampling depth was increased from 1 to 2 ft (Binford et al., 1992; Bundy and Andraski, 1995). Increasing sampling depth from 1 to 2 ft resulted in a slight increase in TYPE A failures with an increase from 3 to 20 sites for preplant sampling (PPNT) and from 7 to 11 sites for presidedress sampling (PSNT). contrast, TYPE B failures were substantially reduced with the 2-ft sampling depth. reduction in failure rate associated with deeper sampling depth resulted from the detection of sites with appreciable accumulation of NO3-N in the second foot. Sites exhibiting TYPE B failures at the 1-ft sample depth, which were successfully predicted as non-responsive with a 2-ft sample depth (76 sites for PPNT and 43 sites for PSNT), had a soil NO₃-N concentration in the 1- to 2-ft depth, which averaged 12 and 14 ppm NO₃-N for PPNT and PSNT sampling times, respectively. Soil NO₃-N in the 1- to 2-ft depth is a readily available source of N for the corn plant. Previous studies of sampling depth effects on PSNT performance have shown little or no advantage to sampling the 1- to 2-ft depth (Binford et al., 1992; Bundy and Andraski, 1995; Sims et al., 1995). However, these evaluations of performance were based on sampling depth effects on the R2 value of statistical models rather than on a test failure rate statistic. For the PSNT, overall failure rates were generally lower for medium-textured soils than for fine- or coarsetextured soils (Table 7).

Preplant sampling to 2 ft on soils with organic matter < 2%, on fine-textured soils, and on soils with pH levels > 7.0, however, resulted in an increase in total failure rate (Table 7). For the low organic matter soils, average soil NO₃-N concentrations were lower, and there was little change in NO₃-N in the second-foot increment from PPNT to PSNT (Table 8). This indicates a low

potential for mineralization of N as the season progressed and low capacity for immobilization and remineralization of residual mineral N. Where pH was > 7.0, soil NO₃-N in the second foot decreased between PPNT and PSNT sampling times soils (Table 11), and the second-foot NO₃-N change between sampling times was small on fine-textured soils (Table 12). These observations also suggest that second-foot NO₃-N was not a major source of N in these two soil categories.

Effect of Sampling Time

With the exception of sites with soybean or small grain as a previous crop (Table 9) and coarsetextured soils (Table 7), the risk of failure in predicting an N response was reduced by sampling later (PSNT timing) in the growing season. When corn was the previous crop, the 2-ft PSNT reduced the overall failure rate to one-half that realized with a 1-ft PPNT sampling (Table 9). Preplant (PPNT) sampling when alfalfa was the previous crop resulted in a > 75% failure rate, all of which were TYPE B. This finding is consistent with other work showing that preplant soil NO3 values in corn following alfalfa were low due to inadequate time for organic N mineralization and that preplant tests were of limited value in separating N responsive and nonresponsive sites (Bundy and Andraski, 1993). None of the corn following alfalfa sites responded to N, and no individual CSNL was derived for the alfalfa data subset; however, TYPE B failures were reduced to < 40% of sites by delaying sampling until PSNT and using the overall CSNL. Predictions of N response for second-year corn after alfalfa were also reduced to a 17% failure rate with a 2-ft PSNT sample (Table 9). Use of the PSNT to determine corn N needs following alfalfa has been investigated in several studies (El-Hout and Blackmer, 1990; Roth et al., 1992; Bundy and Andraski, 1993; Morris et al., 1993). These studies showed that corn following alfalfa usually did not respond to N fertilization, and that yields were maximized by low rates (30 to 50 lb N/acre) when response occurred. Roth et al. (1992) and Bundy and Andraski (1993) reported that about 50% of the sites studied had PSNT (0 to 1 ft) results < 21 ppm NO₃-N. Morris et al. (1993) concluded that the PSNT for corn after alfalfa was most effective when used with a critical value of 14 ppm NO3-N.

The change in soil NO₃-N concentration between PPNT and PSNT sampling times averaged +13.2 and +9.4 ppm for the 0- to 1- and 0- to 2-ft depths, respectively, for first-year corn following alfalfa (Table 10). It is apparent that substantial net N mineralization occurs after corn planting in soils

Percent of sites where soil NO3-N test failed to predict N response as influenced by soil properties, and sampling time and Table 7. depth, 1988-1992.

	depth, 1988-19					Failed so	il test †		
Soil	Time of soil				Overall # CSNL			il specific § CSN	L
property	sampling	Depth	n	TOTAL	TYPE A	TYPE B	TOTAL	TYPE A	TYPEB
		ft				% of si	t c s		
<u>Soil pH</u>									
< 6.0	PPNT	0-1	26	CSNL be	yond range of data		23.1	0	23.1
		0-2	26	23.1	O	23.1	15.4	0	15.4
	PSNT	0-1	26	34.6	0	34.6	26.9	7.7	19.2
		0-2	15		yond range of data			Model failed to fit	
(0 (8	DD IT	0.1	0.5	25.6	•	27.6	26.4	0	26.4
6.0 - 6.5	PPNT	0-1	87	27.6	0	27.6	26.4	0	26.4
		0-2	86	19.7	2.3	17.4	19.7	2.3	17.4
	PSNT	0-1	87	21.8	1.2	20.6	19.5	2.3	17.2
		0-2	58	17.2	2.5	13.8	15.5	5.2	10.3
6.6 - 7.0	PPNT	0-1	70	50.0	0	50.0	41.4	2.9	38.5
0.0		0-2	70	37.1	2.9	34.3	37.1	2.9	34.3
	PSNT	0-1	70	38.6	1.4	37.2	41.4	0	41.4
	15111	0-2	58	35.0	5.2	29.3	37.9	ŏ	37.9
		0-2	20	33.0	3.2	29.3	31.7	V	31.7
> 7.0	PPNT	0-1	40	27.5	0	27.5	32.5	0	32.5
		0-2	40	35.0	20.0	15.0	25.0	2.5	22.5
	PSNT	0-1	40	30.0	7.5	22.5	22.5	15.0	7.5
	1 5.11	0-2	34	23.5	8.8	14.7	23.5	11.8	11.8
Soil Organie	Matter	0-2	34	23.3	0.0	17.7	23.5	11.5	11.0
_									
< 2 %	PPNT	0-1	26	23.1	0	23.1	23.1	0	23.1
		0-2	26	34.6	19.2	15.4	30.8	19.2	11.6
	PSNT	0-1	22	31.8	0	31.8	27.7	0	27.3
		0-2	26	26.9	0	26.9	26.9	0	26.9
2 - 4 %	PPNT	0-1	134	41.0	2.2	38.8	38.8	2.2	36.6
2 - 4 /0	11111	0-2	134	31.3	6.7	24.6	36.6	4.5	32.1
	DOME	0-2		26.7	4.4			3.7	22.2
	PSNT		135			22.2	25.9		
		0-2	124	24.2	7.3	16.9	26.6	7.3	19.4
> 4 %	PPNT	0-1	47	42.6	0	42.6	53.2	0	53.2
		0-2	47	31.9	6.4	25.5	46.8	0	46.8
	PSNT	0-1	50	30.0	0	30.0	28.0	6.0	22.0
		0-2	41	22.0	0	22.0	19.5	0	19.5
Soil Texture	¶								
Conses	PPNT	0-1	49	34.7	0	34.7	32.7	0	32.7
Coarse	PPNI				8.2				
	DOMESTIC STATE OF THE STATE OF	0-2	49	28.6		20.4	30.6	4.1	26.5
	PSNT	0-1 0-2	45 46	33.3 30.4	0	33.3 30.4	17.8 10.9	0 4.4	17.8 6.5
		0-2	40	30.4	V	30.4	10.9	4.4	0.5
Medium	PPNT	0-1	174	38.5	1.2	37.4	37.4	1.2	36.2
		0-2	174	28.2	5.2	23.0	28.2	5.2	23.0
	PSNT	0-1	185	23.8	2.7	29.6	27.6	1.1	26.5
		0-2	139	20.1	6.5	13.7	23.7	2.2	21.5
P:	DD m	0.1		21.0	1.6	20.2	21 0	1.5	30.3
Fine	PPNT	0-1	66	31.8	1.5	30.3	31.8	1.5 0	
	DO) FF	0-2	66	33.3	10.6	22.7	31.8		31.8
	PSNT	0-1	68	33.8	2.9	30.9	29.4	4.4	25.0
		0-2	54	22.2	3.7	18.5	20.4	7.4	13.0

[†] TYPE A failure = Soil NO₃-N ≥ CSNL and RY ≤ 90%; TYPE B failure = Soil NO₃-N < CSNL and RY > 90%.

[‡] CSNL derived from fitting linear-response plateau model to all observations.
§ CSNL derived from fitting linear-response plateau model to specific data subsets based on soil properties.
¶ Coarse includes LS, SL, FSL, CS; Medium includes L, Si, SiL, SCL; Fine includes C, CL, SiCL.

Prob>T † 0.1226 0.9753 0.0001 0.0001 9.1 6.2 8.3 0.3 Mean soil [NO₃-N] as a function of organic matter content, sampling time and depth, with the change in soil [NO₃-N] between sampling time, 1988-1992. (0.9) (1-2") (5.1) Mean change in [NO₃-N] from PPNT to PSNT -0.1 <u>7</u>-4.2 6.0 <u>-</u>1-0 2.3 134 123 26 22 | = 9.0 0.8 S.E. 0.6 1.6 1.2 Min. Soil test NO3-NI 0 m 9 mdd --Max. 42 59 41 31 29 40 34 23 8.8 9.1 9.1 8.2 Mean 9.1 11.1 50 22 26 26 134 135 134 124 ㄷ Time of soil sampling PPNT PSNT PPNT PSNT PPNT PSNT PPNT PSNT PPNT PSNT Soil depth 0-5 2 0-7 -0 Soil Organic Matter Soil property 2-4% < 2 % Table 8.

† Probability that the change in [NO3-N] from PPNT to PSNT =0. ‡T value is for change in [NO3-N] over the 0- to 2-ft depth.

0.0017

3.4

(0.0)

2.8

38

0.7

23

8.5 11.5

47

PPNT PSNT

0-2

-0

> **4** %

0.0004

3.8

4.4

47

Table 9. Percent of sites where soil NO₃-N test failed to predict N response, 1988-1992.

							soil test †		
Previous crop or	Time of soil				<u>rerall</u> ‡ <u>CSNI</u>			specific § CS	
cropping system	sampling	Depth	n	TOTAL	TYPE A	TYPE B	TOTAL	TYPE A	TYPE I
		fì				% of	sites		
All observations	PPNT	0-1	292	36.3	1.0	35.3	na		
All observations	FFIVI	0-1	292	29.5	6.8	22.6	na		
	DCAFT				2.3	25.2	na		
	PSNT	0-1	301	27.6		18.0			
		0-2	239	22.6	4.6	18.0	na		
Corn (with and	PPNT	0-1	146	31.5	2.1	29.5	33.6	2.1	31.5
without manure)		0-2	145	25.5	10.3	15.2	30.3	2.1	28.3
,	PSNT	0-1	144	24.8	3.2	21.6	23.6	2.1	21.5
		0-2	132	15.9	4.6	11.4	21.2	3.0	18.2
Corn (without	PPNT	0-1	127	28.4	1.6	26.8	29.9	1.6	28.4
manure in study		0-2	126	25.4	11.1	14.3	27.8	1.6	26.2
year)	PSNT	0-1	125	24.8	3.2	21.6	23.2	1.6	22.4
		0-2	115	14.7	3.5	11.3	20.9	1.7	19.2
Continuous com	PPNT	0-1	74	24.3	2.7	21.6	27.0	2.7	24.3
	FFINI	0-2	73	20.6	9.6	11.0	19.2	2.7	16.4
(no manure for	DOL TO					16.6	19.4	1.4	18.1
3+ years)	PSNT	0-1	72	19.4	2.8				6.0
		0-2	67	10.5	4.5	5.6	10.4	4.4	0.0
Second-year com	PPNT	0-1	23	34.8	0	34.8	39.1	0	39.1
following alfalfa		0-2	23	21.7	8.7	13.0	34.8	0	34.8
20	PSNT	0-1	23	34.8	8.7	26.1	30.4	4.3	26.1
	10111	0-2	23	17.4	4.4	13.0	30.4	0	30.4
					_				٠,
Soybean	PPNT	0-1	80	33.8	0	33.8		del failed to f	
		0-2	80	30.1	6.3	23.8		del failed to f	
	PSNT	0-1	86	31.4	1.2	30.2	31.4	1.2	30.2
		0-2	56	30.4	7.1	23.2	Mo	del failed to f	it
Small grain	PPNT	0-1	25	24.0	0	24.0	28.0	0	28.0
oman Airm	T.E.14.1	0-1	25	12.0	. 0	12.0	28.0	0	28.0
	DOL TT					24.0	24.0	4.0	20.0
	PSNT	0-1	25	28.0	4.0			0	23.1
		0-2	13	30.8	7.7	23.1	23.1	U	23.1
Alfalfa	PPNT	0-1	27	92.6	0	92.6	Mo	del failed to f	it
		0-2	27	77.8	0	77.8	Mo	del failed to f	it
	PSNT	0-1	28	39.3	0	39.3	Mo	del failed to f	it
		0-2	26	38.4	0	38.4		del failed to f	
			4.0	46.4	1.0	42.0	17.0	2.6	14.3
All sites w/manure	PPNT	0-1	28	46.4	3.6	42.9	17.9	3.6	
in study year		0-2	28	17.9	3.6	14.3	28.6	3.6	25.0
•	PSNT	0-1	29	27.5	3.5	24.1	27.6	3.5	24.1
		0-2	24	25.0	8.3	16.7	33.3	0	33.3

[†] TYPE A failure = Soil NO₃-N ≥ CSNL and RY ≤ 90%; TYPE B failure = Soil NO₃-N < CSNL and RY > 90%.

[‡] CSNL derived from fitting linear-response plateau model to all observations.

[§] CSNL derived from fitting linear-response plateau model to specific crop or cropping system observations.

- continued -

Previous crop or		Time of soil			Soil test [NO ₃ -N]	NO ₃ -N]			Mean cha from I	Mean change in [NO ₃ -N] from PPNT to PSNT	5 .		
cropping system	Depth	sampling	u	Mean	Max.	Min.	S.E.	u	0-1.	0-2,	(1-2')	⊥	Prob>T †
	Ĥ				шdd		***********			udd	4		
All observations	1 -0	PPNT PSNT	292 301	8.5 13.4	50 59	0 7	0.4	288	4.7			10.7	0.0001
	0-5	PPNT PSNT	292 239	8.1	45	2	0.4	223		3.2	(5.1)	3.1	0.002
Com (with and without manure	0-1	PPNT PSNT	146 144	9.8 14.8	42 59	1 2	0.6	142	5.1			7.9	0.0001
	0-5	PPNT PSNT	145	9.6 12.6	41		0.7	130		2.9	(1.3)	4.6	0.0001
Corn (without manure in study	0-1	PPNT PSNT	127	9.2 12.9	40 58	7	0.7 0.9	123	3.8			6.7	0.0001
year)	0-2	PPNT PSNT	126 115	8.8 10.7	38 48	2 - 2	0.6	113		1.8	(0.6)	3.8	0.0002
Continuous com	- 0	PPNT PSNT	74	8.1	31 42	7 7	0.7	72	3.0				
3+ yr)	0-2	PPNT PSNT	73	7.9 9.6	33	1 2	0.7 0.8	<i>L</i> 9		1.5	(0.6)	2.5	0.015
Second-year corn following alfalfa	0-1	PPNT PSNT	23 23	12.6 19.7	40 41	8 7	2.0	23	7.1			4.	0.0002
	0-2	PPNT PSNT	23	12.1 15.7	36 37	9	1.9	23		3.5	(-0.1)	£. 86	0.001

Table 10, (continued).

Previous crop or	4	Time of soil			Soil test [NO ₃ -N]	NO:-N]	ļ		Mean cha from I	Mean change in [NO ₃ -N] from PPNT to PSNT			
ciopping system	Depui	sampring	۔ ا	Mean	Max.	Min.	S.E.	e	0-1,	0-2,	(1-2')	⊢	Prob>T †
	ų				mdd					bbm			
Soybean	1- 0	PPNT PSNT	80	6.3	14	0,	6.4	Š	,				
			}		3	4	0.7	Og	3.1			7.4	0.0001
	0-5	PPNT PSNT	80 26	5.8	14 19	2	0.3	\$2		2.0	(1.1) #	5.3	0.0001
Small grain	0-1	PPNT	76	7 8	Ç	•	ć						
)		PSNT	25	9.6	5 1	- 7	2.0 1.7	25	0.8			0.8	0.426
	0-5	PPNT	25	7.8	45	-	0						
		PSNT	13	9.01	35	· m	2.6	13		0.3	(0.5)	0.3	0.761
Alfalfa	0-1	PPNT	27	7.8	19	c	0						
		PSNT	28	21.3	43		 8.	27	13.2			7.1	0.0001
	0-2	PPNT	27	6.2	16	2	0.7						
		PSNT	56	16.1	27	00	1.2	25		9.4	(5.0)	8.5	0.0001
All sites with	0-1	PPNT	28	14.6	50	m	2.1						
manure applied in study year		PSNT	29	24.6	59	2	3.1	28	8.9			4.1	0.0003
	0-5	PPNT	28	14.9	45	m	2.3						
		PSNT	24	23.3	70	'	. E.	24		7.1	3.5	ť	

 \uparrow Probability that the change in [NO₃ -N] from PPNT to PSNT = 0.

1 + T value is for change in [NO3-N] over the 0- to 2-ft depth.

where alfalfa was the previous crop. Where corn followed soybean, the change in soil NO₃-N concentration between sampling times was not nearly as large as following alfalfa, and failure rate was not substantially reduced by delaying soil sampling until PSNT (Tables 9 and 10). Apparently, the influence of a previous soybean crop on soil NO₃-N concentration is reflected at the preplant soil sampling time.

Overall CSNL vs. Previous Crop/Soil Specific CSNL

The CSNL generated from fitting the entire data set (all observations at the 0- to 1-ft sampling depth in Table 3) to the LRP or QRP models ranged from 16.9 to 24.0 ppm NO₃-N, which are very similar to the CSNL values published by others for the PSNT (Table 1). The NC-201 database was divided into smaller groups of site data based upon common previous crop, manure addition or soil pH, organic matter, and texture. Critical soil NO₃-N levels for each of these data subsets were generated from fitting the LRP and QRP models (Table 3). In general, selecting previous crop or soil specific CSNL values did not result in a reduction of failure rate compared to using the CSNL based on the entire dataset (Table 9). In several cases, model fit was improved by subsetting the data; however, this did not always result in a reduction in failure rate. Using the soil-specific data for coarse-textured soils, the model fit was improved and the failure rate reduced for the PSNT sampling time with either the 1- or 2-ft sample depth (Table 7). Overall failure rate was increased using a crop-specific CSNL, but with an overall reduction in TYPE A failure rate (Table 9).

Change in Soil NO₃-N Concentration Between Sampling Times

The average change in soil NO₁ concentration ([NO₃-N]) from PPNT to PSNT sampling times was usually positive regardless of previous crop or soil property (Tables 8 and 10 to 13). On average, about 75% of sites exhibited an increase in [NO₃-N] from PPNT to PSNT (Table 13). An exception to this statistic were those sites following alfalfa where nearly 100% were positive, and those sites with yield level exceeding 200 bu/acre corn vield. Average soil [NO₃-N] at the 1-ft depth ranged from a high of 24.6 ppm (manured sites, PSNT) to a low of 6.3 ppm (previous crop soybean, PPNT) (Table 10). Given the lack of com N response when alfalfa was the previous crop, it is interesting to note that PPNT soil [NO3-N] were very low, but a large increase in soil [NO₃-N] occurred by the PSNT sampling time. The change in soil [NO₃-N] at either the 1- or 2-ft depth ranked on the basis of previous crop or cropping system was alfalfa >> manured > second-year corn after alfalfa > corn > soybean > small grain. The change in soil [NO₃-N] from PPNT to PSNT was lowest for soils with organic matter < 2%, coarse and fine texture, or a pH <6.0 (Tables 8, 11, 12). This is consistent with our knowledge of factors affecting a soil's potential for mineralization (pH, organic matter), storage (immobilization) of N (organic matter and texture), denitrification of NO₃-N (fine texture), and leaching of NO₃-N (coarse texture).

Effect of Year

Although the reduction in soil test failure rate was consistent for greater sampling depth and later sampling time across the 5 yr of data collection, the relative magnitude of failure rate was not consistent among years (Table 14). Failure rates in 1991 were highest, averaging 37.2% and in 1992 were lowest, averaging 15.2%. TYPE A failure rates were highest in 1989 and Type B failure rates highest in 1991. Of the sites with >200 bu/acre yield level, 60% were in 1992, the year with the lowest failure rate (Table 15). Of the sites with <100 bu/acre yield level, 52% were in 1991, the year with the highest total failure rate. These statistics indicate the vulnerability of soil NO3-N sampling strategies to annual climatic variation as this effects the potential for NO₃-N losses, soil N mineralization, and crop N demand. The results also suggest that soil NO3-N test performance was best in high-yielding years when climatic factors favored NO3-N retention in the corn root zone and efficient N utilization by the crop. This finding is similar to results indicating better soil NO₃-N test performance on high-yield potential soils than on medium- or low-yield potential soils (Bundy and Andraski, 1995). High crop N demand in good years may also make residual soil NO3-N a more important source of N for corn.

CONCLUSIONS

- Neither the R² nor the Shapiro-Wilk test provided clear statistical criteria for selecting a CSNL derived from the LRP or QRP models. Calculation of a failure rate based on non-N-responsive sites and CSNL gave a more practical decision tool for assessing the economic or environmental consequence of selecting a given CSNL. Although an improved model R² generally resulted in a lower failure rate, there were cases where an improved R² did not always insure the lowest failure rate.
- Sampling to 2 ft improved the success of predicting non-responsive sites for both PPNT

Mean soil [NO₃-N] as a function of soil pH, sampling time, and depth with the change in soil [NO₃-N] between sampling time, 1988-1992. Table 11.

Previous crop or		Time of soil			Soil test [NON]	40,-N			Mean cha	Mean change in [NO ₃ -N]	Į,		
cropping system	Depth	sampling	c	Mcan	Мах.	Min.	S.E.	=	1-0	1, 0-2,	(1-2')	Г	Prob>T †
Soil pH	#				udd					mdd			
< 6.0	0-1	PPNT PSNT	26 26	5.8 8.7	13 34	7 7	0.6	26	2.9			2.8	0.0095
	0-2	PPNT PSNT	26 15	5.3 6.3	12	7 7	0.6	15		1.3	(1.2) ‡	1.8	0.0905
6.0 - 6.5	<u>-</u>	PPNT PSNT	87	7.8	50 58	7 7	0.8	87	3.7			4.9	0.0001
	0-2	PPNT PSNT	86 58	7.4	45 70	7 7	0.7	58		3.2	(2.3)	2.7	0.0097
6.5 - 7.0	0- 1	PPNT PSNT	07 07	7.6 12.3	29 39	7 0	9.0 0.9	0/	4.7			6.1	0.0001
	0-5	PPNT PSNT	70 58	7.0	27 32	0 4	0.6 0.8	58		3.5	(1.6)	6.1	0.0001
> 7.0	0-1	PPNT PSNT	40	8.8 12.1	31	- 7	1.0	40	3.3			2.7	0.0108
	0-2	PPNT PSNT	40 34	8.7 10.2	24 26	7 7	1.0	34		1.7	(-0.2)	1.9	0.0633
+ Probability that the	he change in	+ Probability that the change in [N.O. M. from DDAT to DCATT -0	Exad of .	0-1									

† Probability that the change in [NO₃-N] from PPNT to PSNT =0. ± T value is for change in [NO₃-N] over the 0- to 2-ft depth.

Mean soil [NO₃-N] as a function of soil texture, sampling time, and depth with the change in soil [NO₃-N] between sampling time, 1988-1992. Table 12.

		Time of soil			Soil test [NON]	[N-0]			Mean cha	Mean change in [NO ₃ -N] from PPNT to PSNT	[]		
rrevious crop or cropping system	Depth	sampling	u	Mean	Max.	Min.	S.E.	u	0-1,	.0-2.	(1-2')	Т	Prob>T †
	Ĥ				шdd					usesus Wdd			
Soil Texture ‡													
Coarse	1-0	TNAM	49	8.0	34	- 6	1.1	45	2.4			2.7	0.0087
		FSINI	}	<u>.</u>	Š	4	2	2	i			i)))
	0-2	PPNT	49	7.9	28	-	1.0				:	,	,
		PSNT	46	9.1	48	7	1.3	46		6.0	(0.0)	0.0	0.3612
Medium	-0	PPNT	174	9.1	50	_	9.0					•	,
		PSNT	185	15.5	29	7	0.8	174	6.4			10.6	0.0001
	0-5	PPNT	174	8.5	45	-	9.0						
	l I	PSNT	139	13.9	70	2	8.0	128		4.9	(2.4)	7 80	0.0001
Fine	0-1	PPNT	99	7.6	22	0	9.0	;	:			ć	0
		PSNT	89	6.7	55	2	0.1	99	5.			7.0	0.0108
	0-5	PPNT	99	7.0	20	0	0.5	i		ć	ć	•	0
		PSNT	54	8.2	53	2	9.0	54		6.0	(6.9)	×:	0.0808

 \dagger Probability that the change in [NO₃-N] from PPNT to PSNT =0.

§ T value is for change in [NO₃-N] over the 0- to 2-ft depth.

[‡] Coarse includes LS, SL, FSL, LFS, CS; Medium includes L, SiL, SCL; Fine includes C, CL, SiCL.

Table 13. Percent of sites where change in soil [NO₃-N] between preplant (PPNT) and presidedress (PSNT) time was >0, 1988-1992.

Cata		Δ [NO ₃ -N] PPNT to PSNT >	
Category	<u>0-1 ft</u>	0-2 ft	1-2 ft
		% of sites	*
All observations	80 (288)	76 (228)	70 (223
Soil Organic Matter	77 (203)	75 (187)	71 (182
<2%	68 (22)	62 (26)	73 (22
2-4%	81 (134)	78 (123)	71 (122
>4%	70 (47)	76 (38)	71 (38)
<u>Soil pH</u>			
< 6.0	85 (26)	67 (15)	90 (15°
6.0-6.5	81 (87)	76 (58)	80 (15)
6.6-7.0	84 (70)	83 (58)	64 (58)
>7.0	63 (40)	68 (34)	74 (58) 56 (34)
<u>Manure</u>			
None	82 (235)	77 (179)	74 (174)
Applied in study year	82 (28)	79 (24)	63 (24)
Applied prior to study year	76 (25)	72 (25)	48 (25)
Relative Yield			
> 90%	82 (130)	77 (105)	69 (104)
< 90%	78 (158)	76 (123)	71 (119)
Previous Crop/Cropping System			
Alfalfa	93 (27)	100 (25)	96 (25)
Corn	78 (142)	75 (130)	68 (128)
Soybean	86 (80)	81 (52)	69 (52)
Small grain	60 (25)	54 (13)	62 (13)
Yield Level (bu/acre)			
0 - 100	78 (14)	60 (6)	50 (5)
100 - 150	83 (84)	84 (62)	71 (52)
150 - 200	75 (102)	71 (80)	72 (79)
>200	91 (30)	84 (26)	65 (20)
<u>Cexture</u>			
Coarse	71 (45)	61 (46)	57 (42)
Medium	87 (174)	87 (128)	80 (127)
Fine	68 (66)	65 (54)	57 (54)
<u>′еаг</u>			
1988	60 (5)	80 (5)	100 (5)
1989	76 (3 8)	79 (38)	66 (38)
1990	69 (88)	65 (62)	64 (58)
1991	84 (82)	75 (52)	73 (51)
1992	91 (75)	86 (71)	73 (71)

[†] Number in parentheses = total number of sites.

Table 14. Effect of year on the percent of sites where soil [NO₂-N] failed to predict N response, 1988-1992.

Time of	Soil				Failed soil test †	
sampling	depth	Year	n	TOTAL	ТҮРЕ А	TYPE B
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	% of sites	
PPNT	0-1	1988	5	20.0	0	20.0
LLMI	0-1	1989	38	39.5	5.3	34.2
		1990	92	42.4	1.1	41.3
		1991	82	47.6	0	47.6
		1992	75	16.0	0	16.0
PPNT	0-2	1988	5	0	0	0
11141	V-2	1989	38	29.0	10.5	18.5
		1990	92	34.1	13.2	20.9
		1991	83	37.4	1.2	36.3
		1992	75	17.3	4.0	13.3
PSNT	0-1	1988	5	20.0	0	20.0
LOINI	0-1	1989	38	26.3	5.3	21.1
		1990	92	32.6	2.2	30.4
		1991	91	34.1	1.1	33.0
		1992	75	14.7	2.7	12.0
PSNT	0-2	1988	5	0	0	0
LONI	0-2	1989	38	23.7	10.5	13.2
		1990	64	28.1	4.7	23.4
		1991	61	29.5	1.6	27.9
		1992	71	12.7	4.2	8.5

[†] TYPE A failure = Soil NO_3 -N \geq CSNL and RY \leq 90%; TYPE B failure = Soil $[NO_3$ -N] <CSNL and RY > 90%. CSNL derived from fitting linear-plateau model to all observations.

Table 15. Effect of yield level on the percent of sites where soil [NO₃-N] failed to predict N response, 1988-1992.

Time of sampling	Soil depth	Yield level	n	TOTAL	Failed soil test † TYPE A	TYPE B
	ft	bu/acre			% of sites	
PPNT	0-1	<100	18	27.8	0	27.8
LLINI	0-1	100-150	102	44,1	2.0	42.1
		150-200	139	33.8	0.7	33.1
		>200	33	27.3	0	27.3
DD) FF	0-2	<100	18	22.2	0	22.2
PPNT	0-2	100-150	102	36.3	3.9	32.4
		150-200	139	25.2	9.4	15.8
		>200	33	30.3	9.1	21.2
DCMT	0-1	<100	23	34.8	0	34.8
PSNT	0-1	100-150	106	29.3	1.9	27.4
		150-200	139	28.1	3.6	24.5
		>200	33	15.2	0	15.2
DONT	0-2	<100	15	33.3	0	33.3
PSNT	0-2	100-150	78	28.2	5.1	23.1
		150-200	115	20.0	6.1	13.9
		>200	31	12.9	0	12.9

[†] TYPE A failure = Soil NO₃-N \geq CSNL and RY \leq 90%; TYPE B failure = Soil [NO₃-N] < CSNL and RY > 90%. CSNL derived from fitting linear-plateau model to all observations.

- and PSNT. Nitrate-N in the 1- to 2-ft depth is readily available to corn, and accounting for this N in calibrating soil NO₃ tests and making fertilizer N recommendations should result in improved fertilizer N efficiency and reduce the risk of groundwater contamination with NO₃-N.
- 3. Although model fit was generally improved for data subsets based on soil pH, organic matter and texture, the failure rate was generally higher when these soil specific CSNL were used. An exception to this was a significant reduction in TYPE B failures on coarsetextured soils sampled at PSNT. Using the crop-specific CSNL, however, reduced TYPE A failure rate.
- 4. Overall failure rates for the PPNT and PSNT with a 2-ft sampling depth were 30 and 23%, respectively. However, the respective TYPE A failure rates were 7 and 5% for the PPNT and PSNT. These results suggest that most of the test failures would have resulted in overapplication of N rather than inadequate N additions.
- 5. Presidedress soil sampling (PSNT) to 2 ft reduced the overall failure rate in predicting N response to between 10 and 17% of all sites when corn was the previous crop. This is a reduction from 20 to 26% failure rate for the preplant (PPNT) sampling time.
- 6. Soil NO₃-N concentrations below the PPNT critical level resulted in > 75% failure rate when alfalfa was the previous crop. Presidedress sampling (PSNT) of these sites, however, captured substantial net mineralization of N and failure rate was reduced to < 39% of these sites. Although N recommendations for corn following soybean usually receives some legume N adjustment, PSNT sampling did not reduce the failure rate of predicting N responsive or non-responsive sites.</p>
- 7. The change in soil NO₃-N concentrations from PPNT to PSNT was greatest for soils that had received manure (+8.9 ppm) or where alfalfa was the previous crop (+13.2 ppm). These were also the sites with the most significant decline in failure rate from PSNT sampling. Soils with low organic matter, high denitrification or leaching potential and pH <6.0 exhibited the lowest change in NO₃-N concentrations.
- 8. Failure rate reduction with increased sampling depth and later sampling time was consistent from year-to-year; however, the frequency of soil test failure was not. Total soil test failure rates varied from 37.2 to 15.2% across years

with differences in both TYPE A and TYPE B failure rates as well. The relative success of soil NO₃ test strategies is subject to variations in growing season that influence the potential for NO₃-N loss, soil N mineralization dynamics, and crop N demand.

REFERENCES

- Binford, G.D., A.M. Blackmer, and M.E. Cerrato. 1992. Relationships between corn yields and soil nitrate in late spring. Agron. J. 84:53-59.
- Blackmer, A.M., D. Pottker, M.E. Cerrato, and J. Webb. 1989. Correlations between soil nitrate concentrations in late spring and corn yields in Iowa. J. Prod. Agric. 2:103-109.
- Bock, B.R., and K.R. Kelley. 1992. Predicting N fertilizer needs for corn in humid regions. Bull. Y-226, Natl. Fertilizer and Environ. Res. Ctr., TVA, Muscle Shoals, AL.
- Bundy, L.G., and E.S. Malone. 1988. Effect of residual profile nitrate on corn response to applied nitrogen. Soil Sci. Soc. Am. J. 52: 1377-1383.
- Bundy, L.G., M.A. Schmitt, and G.W. Randall. 1992. Predicting N fertilizer needs for corn in humid regions: Advances in the Upper Midwest. p. 73-89. In B.R. Bock and K.R. Kelley (ed.) Predicting N fertilizer needs for corn in humid regions. Bull. Y-226, Natl. Fertilizer and Environ. Res. Ctr., TVA, Muscle Shoals, AL.
- Bundy, L.G., and T.W. Andraski. 1993. Soil and plant nitrogen availability tests for corn following alfalfa. J. Prod. Agric.6:200-206.
- Bundy, L.G., and J.J. Meisinger. 1994. Nitrogen availability indices. p. 951-984. In R.W. Weaver et al. (ed.) Methods of soil analysis.
 Part 2. Micro-biological and biochemical properties. SSSA Book Series no. 5. SSSA, Madison, WI.
- Bundy, L.G., and T.W. Andraski. 1995. Soil yield potential effects on performance of soil nitrate tests. J. Prod. Agric. 8:561-568.
- Cerrato, M.E., and A.M. Blackmer. 1990. Comparison of models for describing corn yield response to applied nitrogen. Agron. J. 82:138-143.
- Daberkow, S., and H. Taylor. 1993. Nitrogen fertilizer application timing practices on 1992
 U.S. corn acreage. p. 37-40. In Agricultural resources: Inputs. Situation and Outlook Rep., Resour. and Technol. Div., Economic Res. Serv., USDA, Washington, DC, 20005-4788. AR-32.

- Dahnke, W.C. (ed.). 1988. Recommended chemical soil test procedures for the North Central Region. North Central Regional Pub. no. 221 (revised), Bull. no. 499 (revised), North Dakota Agric. Exp. Stn., Fargo, ND.
- DeLong, D.M., and Y.C. Yuan. 1988. The univariate procedure. p. 405-420. In SAS procedures guide, 6.03 ed. SAS Institute, Cary, NC.
- El-Hout, N.M., and A.M. Blackmer. 1990. Nitrogen status of corn after alfalfa in 29 Iowa fields. J. Soil Water Conserv. 45:115-117.
- Fox, R.H., G.W. Roth, K.V. Iversen, and W.P. Piekielek. 1989. Soil and tissue nitrate tests compared for predicting soil nitrogen availability to corn. Agron. J. 81:971-974.
- Hergert, G.W. 1987. Status of residual nitratenitrogen soil tests in the United States of America. p. 73-88. In Soil testing: sampling, correlation, calibration, and interpretation. Spec. Publ. no. 21. SSSA, Madison, WI.
- Keeney, D.R., and R.F. Follett. 1991. Managing nitrogen for groundwater quality and farm profit-ability: Overview and introduction. p. 1-7. In R.F. Follett et al. (ed.) Managing nitrogen for groundwater quality and farm profitability. SSSA, Madison, WI.
- Keeney, D.R., and D.W. Nelson. 1982. Nitrogen inorganic forms. p. 643-698. <u>In</u> A.L. Page et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
- Klausner, S.D., W.S. Reid, and D.R. Bouldin. 1993. Relationship between late spring soil nitrate concentrations and corn yields in New York. J. Prod. Agric. 6:350-354.
- Liang, B.C., M. Remillard, and A.F. MacKenzie. 1991. Influence of fertilizer, irrigation, and non-growing season precipitation on soil nitrate-nitrogen under corn. J. Environ. Qual. 20:123-128.
- Magdoff, F.R. 1991. Understanding the Magdoff presidedress nitrate test for corn. J. Prod. Agric. 4:297-305.
- Magdoff, F.R., W. E. Jokela, R. H. Fox, and G.F. Griffin. 1990. A soil test for nitrogen availability in the northeastern United States. Commun. Soil Sci. Plant Anal. 21: 1103-1115.

- Magdoff, F.R., D. Ross, and J. Amadon. 1984. A soil test for nitrogen availability to corn. Soil Sci. Soc. Am. J. 48:1301-1304.
- Meisinger, J.J., V.A. Bandel, J.S. Angle, B.E. O'Keefe, and C.M. Reynolds. 1992. Presidedress soil nitrate test evaluation in Maryland. Soil Sci. Soc. Am. J. 56:1527-1532.
- Morris, T.F., A.M. Blackmer, and N.M. El-Hout. 1993. Optimal rates of nitrogen fertilization for first-year corn after alfalfa. J. Prod. Agric. 6: 344-350.
- National Oceanic and Atmospheric Administration (NOAA). 1983. Climatic atlas of the United States. Environ. Data Serv., Environ. Sci. Serv. Admin., U.S. Dep. of Commerce, Washington, DC. (Original printing, 1968).
- Roth, G.W., and R.H. Fox. 1990. Soil nitrate accumulations following nitrogen-fertilized corn in Pennsylvania. J. Environ. Qual. 19:243-248.
- Roth, G.W., D.B. Beegle, and P.J. Bohn. 1992. Field evaluation of a presidedress soil nitrate test and quicktest for corn in Pennsylvania. J. Prod. Agric. 5:476-481.
- Sander, D.H., D.T. Walters, and K.D. Frank. 1994. Nitrogen testing for optimum management. J. Soil Water Conserv. 49(2):46-52.
- SAS Institute, Inc. 1985. SAS user's guide: Statistics. 5th ed. SAS Inst., Cary, NC.
- Schmitt, M.A., and G.W. Randall. 1994. Developing a soil nitrogen test for improved recommendations for corn. J. Prod. Agric. 7:328-334.
- Sims, J.T., B.L. Vasilas, K.L. Gartley, B. Milliken, and V. Green. 1995. Evaluation of soil and plant nitrogen tests for maize on manured soils of the Atlantic Coastal Plain. Agron. J. 87:213-222.
- Stewart, B.A., D.A. Woolhiser, W.H. Wischmeier, J.H. Caro, and M.H. Frere. 1975. Control of water pollution from cropland, Vol.1. USDA Report no. ARS-H-5-1, Washington, DC.
- USDA. 1974. Agricultural statistics 1974. U.S. Gov. Print. Office, Washington, DC.
- USDA. 1992. Agricultural statistics 1992. U.S. Gov. Print. Office, Washington, DC. 524 p. ISBN 0-16-041621-3.

11	
-	77 65 63 63 63 63 63 63 63 63 63 63
1 2	X X X X X X X X X X
	V V V V V V V V V V V V V V V V V V V
- 11	
NO.	13. 13. 13. 13. 13. 13. 13. 13. 13. 13.
SOIL NO,-N	799 88.77 88.77 89.88 80.00 80.0
	194 8 8 11 12 12 12 12 12 12 12 12 12 12 12 12
χ	
JULIAN DAY	FN 528 28 2 1 1 1 1 2 2 1 1 2 2 1 2 2 2 2 2
	1
:	00000000000000000000000000000000000000
8	
a	
 	<u> </u>
GROWN	
CROP	
Cla	00000000000000000000000000000000000000
2	
1	0000000440%00400000044444004004004004444
¥	
98 X	00000
<u>×</u>	C
<u>×</u>	23
MO Ha	6.5 2.1 6.5 2.1 6.6 3 1.2 7.0 2.3 7.0 2.3 7.3 6.4 3.4 6.9 2.7 6.0 M 34 139 6.0 M 34 139 7.2 4.5 7.3 2.4 7.3 6.3 139 7.4 6.9 2.7 6.9 2.7 6.9 2.7 6.9 2.7 6.9 2.7 6.9 2.7 7.0 2.3 7.1 3.3 7.2 4.2 7.3 6.4 7.3 6.4 7.3 6.4 7.3 6.4 7.3 6.4 7.3 6.4 7.3 6.4 7.4 139 7.5 6.9 7.6 6.9 7.7 1.3 7.8 139 7.9 2.9 7.1 3.5 54 240 7.1 3.5 54 240 7.1 3.5 54 240 7.1 3.5 54 240 7.1 3.3 3.3 3.9 7.1 3.3 3.3 3.9 7.1 3.3 3.3 3.9 7.2 2.90 7.3 4.1 28 130
От вн ОМ Р К	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
g Txt Dm bH OM P K	sil 2 65 2.1 9 357 C c c c c c c c c c c c c c c c c c c
Long Txt Dm pH OM P K	100 si 2 6.5 2.1 99 357 C 100 si 2 6.5 2.7 100 si 2 6.5 2.1 99 357 C 100 si 2 6.5 2.1 99 357 C 6.9 2.7 2.3 3.0 4.3 C 6.9 2.7 2.3 3.0 4.3 C 6.9 2.7 2.3 3.0 3
g Txt Dm bH OM P K	41 100 sil 2 65 2.1 99 357 C 41 100 sil 2 65 2.1 99 357 C 45 69 4 cl 5 6.5 2.1 99 357 C 46 94 cl 5 6.5 2.1 99 357 C 46 94 cl 5 6.3 1.2 30 430 C 46 94 cl 5 6.3 1.2 30 430 C 46 94 cl 5 6.3 1.2 30 430 C 46 94 cl 5 6.3 2.1 99 357 C 46 94 cl 5 7.3 6.4 78 135 C 46 94 cl 5 7.3 6.8 N 46 94 sil 2 7.3 5.9 17 139 46 94 sil 2 7.3 6.4 78 130 C 47 100 sil 2 6.5 2.1 48 90 sil 3 3 3.4 49 90 sil 3 3 3.4 45 90 sil 3 3 3.4 45 90 sil 3 3 3.7 45 90 sil 3 3 3.7 47 99 sil 3 3 3.7 48 90 sil 3 3 3.7 48 90 sil 3 3 3.7 48 90 sil 3 3 3.4 49 90 sil 3 3 3.4 40 94 sil 2 7.1 4.9 41 100 sil 2 6.5 2.1 42 94 sil 2 7.1 4.9 43 90 sil 3 3 3.4 44 90 sil 3 3 3.4 45 90 sil 3 3 3.4 45 90 sil 3 3 3.4 46 94 sil 2 7.1 4.9 47 94 sil 2 7.1 4.9 48 99 sil 2 7.1 8.9 48 99 sil 3 7.1 3.7 72 290 48 94 sil 5 6.7 4.1 97 836 48 94 sil 5 6.7 4.1 97 836
Lat Long Txt Dm pH OM P K	41 100 sil 2 65 2.1 99 357 C 41 100 sil 2 65 2.1 99 357 C 45 69 4 cl 5 6.5 2.1 99 357 C 46 94 cl 5 6.5 2.1 99 357 C 46 94 cl 5 6.3 1.2 30 430 C 46 94 cl 5 6.3 1.2 30 430 C 46 94 cl 5 6.3 1.2 30 430 C 46 94 cl 5 6.3 2.1 99 357 C 46 94 cl 5 7.3 6.4 78 135 C 46 94 cl 5 7.3 6.8 N 46 94 sil 2 7.3 5.9 17 139 46 94 sil 2 7.3 6.4 78 130 C 47 100 sil 2 6.5 2.1 48 90 sil 3 3 3.4 49 90 sil 3 3 3.4 45 90 sil 3 3 3.4 45 90 sil 3 3 3.7 45 90 sil 3 3 3.7 47 99 sil 3 3 3.7 48 90 sil 3 3 3.7 48 90 sil 3 3 3.7 48 90 sil 3 3 3.4 49 90 sil 3 3 3.4 40 94 sil 2 7.1 4.9 41 100 sil 2 6.5 2.1 42 94 sil 2 7.1 4.9 43 90 sil 3 3 3.4 44 90 sil 3 3 3.4 45 90 sil 3 3 3.4 45 90 sil 3 3 3.4 46 94 sil 2 7.1 4.9 47 94 sil 2 7.1 4.9 48 99 sil 2 7.1 8.9 48 99 sil 3 7.1 3.7 72 290 48 94 sil 5 6.7 4.1 97 836 48 94 sil 5 6.7 4.1 97 836
1.D. Lat Long Txt Dm pH OM P K	CHI
State I.D. Lat Long Txt Dm pH OM P K	NE CHI NE
1.D. Lat Long Txt Dm pH OM P K	CHI

	RY	93	76	. 22.2	£ 20 :	\$ %	93	5 5 4 5	88	88	58	888	283	2 % 2 %	64	77.	26	75	59	323	8 %	52	28	80	5. 1	63	18	<u>8</u>	œ (66	88	888
	YIELD Yhi R	61 1 84 75	225	34:	<u>3</u>	~ ~																										181
	XIO XII	121	4	25	J 24.	 40 40	6																							_		
1	PS2 Y		15.7											12.7 10.3 1									4.5 4.5	7.7		æ'.c.	; ;					20 7.5
	N V							ر در در		2, c.	۰, ۲	4.0												•	00	v) v	<u>ີ</u> ພັງ					23.7 9.8 9.8
	PS1	\$ 20 8 11.2						20 C			ω_ ~												- 4	<u> </u>								
	PPZ	3.8	· ∞ •	, w.	÷ 00 ·	4 ×			•					3.7																		5 10.7
	PP1	12.9	2.0	5.6	=	4) A	;	2. W	121	8.8	8, 1,	9	₹.	7.7.	4, v.	25	7 4	9.1	4.5	1.00	12.5	=;	, œ	4 5	<u> </u>	0 ~	9	ÿ. <u>Ş</u>	۲.	2, 1	2:	2.8 2.5 5.5 5.5
	PSNT	164 152	791	22	25	<u> </u>	165	176	169	271 271	149	186	182	<u>3</u> 2	992	46	181	181	165	163	22	170	158	158	165	163	183	38	921	<u> </u>	122	169
	PPNT PSNT	21 28 28	222	122	28	<u>88</u>	3	25	.02	<u>2</u> 2	103	123	32	22	621	80	242	24	101	601	00 00 00 00	82	33	88	113	120	141	130 165	130	× 6		96 8
	⊒ PP																															
l	Ti	3¥8	:05	ට්ට්	SE	5 5	Z	ΞĈ	:D	ĒΩ	ರಿರಿ	ם מ	ומב	מל	Σ5	Σ	901	ວີ	25	25	22	Σξ	לכ	55	Σ	ರ≥	: C	55	ರ	5 ≥	ΣΣ	ಕರರ
	X	000	~~	000	•	٥٢	10	00	0	00	00	00	> 7 •	00	0 ~	000	-	00	00	0	00	00	90	0	00	00	0	-	0	70	,0,	40 M
	92																															
	91																															
	3 6 S	ပပ	, c	ာပ	ںر	٥ر	رر	٥ر	0	ပပ	ပပ	ပ	ان	ပပ	٥ر) O	ں ں	ပပ	O	ںر	ပပ	O	ပပ	ပ	ەن	٥٥	၂ပ	ပပ	ပ	ي ر	ان	၁၀၀
11 /	~!																															
	28	~ 00	0	, O	∞ د	ပ «	ćo	٥٥	, ن	Vγ	ပင	<u>م</u> (ان	ပတ	د د	, O	ان	ပပ	Ö	ر د	OU	ပ	ပပ	ပ	رر	S C	<u>م</u> ر	o≱	s c	رر	ان	၁၀၀
	2 KUP G 88 89	s O O	ەن 4										بن نهر		<u>ح</u> در	, O) ()	ပပ	0	က က	ပပ	00	ပပ		4			& SC & CC				, , , ,
	CROP GROWN 37 88 89 90	soc		S	'nΟ	s d	∢≯	ωC	, O.	V	S S C	S.C.	۰≯د	ပပ	αυ αυ) () ()	0 0 0 0 0	, , , ,	o o o	00	ပ	ပပ	25) J	٥٥	≯			∢ ⊲	<u>د</u> ن د	
	87	s		S	'nΟ	s d	∢≯	ωC	, O.		S S C	S.C.		ပပ	× 0	, O) () ()	0 0 0 0 0	0	, U	00 00	ပ		25) J	٥٥	≯	SS≥		∢ ⊲	<u>د</u> ن د	
	86 87		۷ ۷	S	nυ v	ν «	<≱	O C) ()) ()	S A	ာ CRP	A swC) Y (ပပ	ω (.) () ()	ပပ	0) U	ပင) ()) 2 2 3 3 5 5	CRP) () ()	oc ≱c	SF W	SS ≫ ∪		4 4	(a.C	νυ∢ υυυ
	K 86 87	922 613	118 A A A	24 C C S	261 S C	101 C S	* * * * * * * * * * * * * * * * * * *	124 C S	20 20 20 891	210 A A 142 S C	99 C CRP	A SwC	108 A A	182 C C 227 C C	4. W V	139	320 200 370	350 C C C	0) U	340 360 0	430 C C C		690 CRP	20 20 20 20 20 20 20 20 20 20 20 20 20 2	150 W C	125 SF W	180 W SG 540 C W	240	250 A A	215 P C	170 CC CC 210 A CC CC
	Р К 86 87		51 118 A A	33 84 C S	261 S C	101 C S	* * * * * * * * * * * * * * * * * * *	5 6 124 C S	001 168	.5 83 210 A A 28 142 S C	S 99 C CRP	A swC	108 A A	ပပ	4. W V	32 139 C C C	22 320 320 CC CC	ပ ပ (* 320 (* 320	, o o) U	7* 416 C C C	6+ 430 C C	2 day 2 069 191 069 191	16* 690 C CRP	18 96 19 96 18 96	78 150 W C	12 125 SF W	19 180 W SG 36 540 C W	20 240	33 250 A A A	215 P C	νυ∢ υυυ
	OM P K 86 87	4 3 72 922 7 3 82 613 7 3 82 613	2.2 51 118 A A	3.6 33 84 C S	3.5 77 261 S C	2.9 38 101 C S	6.7 22 111 W W	5.5 6 124 C S M 31 138 C C	2 100 168 C C	5.5 83 210 A A 5 28 142 S C	6 5 99 C CRP	A SWC	3 23 108 A A	4 100 182 C C 3 60 227 C C	2 8 77 R S	6 32 139 C C	2.5 2.5 310 C C C C 1.2 9* 320 C C	1.2 6* 320 C C 2 C C	<u>0.7</u>	, r	1.6 7* 416 C C C 1.4 7* 360 C C	1.4 6* 430 C. C.	1.8 16* 690 CRP C	1.8 16* 690 C CRP	1.8 16* 690 C CKP 2.1 18 90 C C	3.7 78 150 W C	4.2 12 125 SF W	3.1 19 180 W SG 3 36 540 C W	3.1 20 240	3.4 33 250 A A A	4.2 64 215 P C	3 81 183 C C 4.5 53 170 C C 4.2 55 210 A C
	Р К 86 87	922 613	2.2 51 118 A A	33 84 C S	3.5 77 261 S C	2.9 38 101 C S	cl 2 5:6 6.7 22 111 W W	5 8.1 5.5 6 124 C S	2 100 168 C C	5.5 83 210 A A 5 28 142 S C	6 5 99 C CRP	A SWC	3 23 108 A A	6.3 4 100 182 C C 7.0 3 60 227 C C	2 68 77 8 8 S	5.3 6 32 139 C C	7.3 2.5 2.5 310 C C C 7.9 1.2 9* 320 C C	7.4 1.2 6* 320 C C 6.5 2 C C	6.8 0.7	7.0 2 C C	7.4 1.6 7* 416 C C C 74 14 7* 360 C C	7.3 1.4 6* 430 C. C	7.2 1.8 16* 690 CRP C 7.2 1.8 16* 690 CRP C	7.2 1.8 16 690 C CRP	7.2 1.8 16* 690 C CKP 6.4 2.1 18 90 C C	6.9 3.7 78 150 W C	3 6.2 4.2 12 125 SF W	2 6.2 3.1 19 180 W SG 3 6.4 3 36 540 C W	2 6.2 3.1 20 240	2 7.0 3.4 33 250 A A A 7.0 A A 2.2 238 A A	3 7.3 4.2 64 215 P. C.	170 CC CC 210 A CC CC
	Txt Dm pH OM P K 86 87	sil 3 6.4 3 72 922 sil 2 6.7 3 82 613	2.2 51 118 A A	3.6 33 84 C S	3.5 77 261 S C	2.9 38 101 C S	6.7 22 111 W W	5 8.1 5.5 6 124 C S	4 7.1 2 100 168 C C	4 5.8 5.5 83 210 A A A 4 5.6 5 28 142 S C	5 8.0 6 5 99 C CRP c 4 6.7 48 34 126 C	2 4 SWC	2 6.6 3 23 108 A A	6.3 4 100 182 C C 7.0 3 60 227 C C	cs 1 2 R S	cl 5 5.3 6 32 139 C C	sici 3 7.3 2.5 2.5 310 C C sil 2 7.9 1.2 9* 320 C C	sil 2 7.4 1.2 6* 320 C C C l 3 6.5 2 C C	is 3 6.8 0.7 C C	sci 3 6.8 2 sci 3 7.0 2 C C	sil 2 7.4 1.6 7* 416 C C	sil 2 7.3 1.4 6* 430 C. C.	[5] 4 7.2 1.8 16* 690 CRP C [5] 4 7.2 1.8 16* 690 CRP C	Ifs 3 7.2 1.8 16* 690 C CRP	Its 3 7.2 1.8 16* 690 C CKP sil 2 6.4 2.1 18 90 C C	sic 5 6.9 3.7 78 150 W C	sic 3 6.2 4.2 12 125 SF W	sil 2 6.2 3.1 19 180 W SG sicl 3 6.4 3 36 540 C W	sicl 2 6.2 3.1 20 240	si 2 7.0 3.4 33 250 A A A	31 3 7.3 4.2 64 253 P C	sil 3 6.4 4.5 53 170 C C C sil 2 6.9 4.2 55 210 A C
	Dm pH OM P K 86 87	sil 3 6.4 3 72 922 sil 2 6.7 3 82 613	4 6.8 2.2 51 118 A A	Si 4 7.1 3.6 33 84 C S	sl 3 6.2 3 11 80 C S 1 4 6.9 3.5 77 261 S C	1 4 7.3 2.9 38 101 C S	si 2 0.0 1.3 33 100 A A scl/l/cl 2 5.6 6.7 22 111 W W	94 cl 5 8.1 5.5 6 124 C S	94 fsl 4 7.1 2 100 168 C C	94 cl 4 5.8 5.5 83 210 A A 94 cl 4 5.6 5 28 142 S C	94 cl 5 8.0 6 5 99 C CRP 94 cl 5 4 6.7 4 8 34 126 C	94 sil 2 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	94 sil 2 6.6 3 23 108 A A	94 sil 2 6.3 4 100 182 C C 94 l 2 7.0 3 60 227 C C	94 cs 1 2 R S	94 cl 5 5.3 6 32 139 C C	sici 3 7.3 2.5 2.5 310 C C sil 2 7.9 1.2 9* 320 C C	sil 2 7.4 1.2 6* 320 C C C l 3 6.5 2 C C	is 3 6.8 0.7 C C	sci 3 6.8 2 sci 3 7.0 2 C C	sil 2 7.4 1.6 7* 416 C C	sil 2 7.3 1.4 6* 430 C. C.	100 [s] 4 7.2 1.8 16* 690 CRF C 100 [s] 4 7.2 1.8 16* 690 CRP C	100 Ifs 3 7.2 1.8 16* 690 C CRP	100 1fs 3 7.2 1.8 16* 690 C CKP 83 sil 2 6.4 2.1 18 90 C C	83 sic 5 6.9 3.7 78 150 W C	100 sicl 3 6.2 4.2 12 125 SF W	100 sil 2 6.2 3.1 19 180 W SG 100 sicl 3 6.4 3 36 540 C W	100 sicl 2 6.2 3.1 20 240	90 sl 2 7,0 3,4 33 250 A A A 60 sl 4 7,0 4 43 238 A A	90 1 3 7.3 4.2 64 2.55 P. C.	90 811 3 6.3 5 91 103 C C 90 81 2 6.9 4.2 55 210 A C
	Txt Dm pH OM P K 86 87	42 94 sil 3 6.4 3 72 922 39 98 sil 2 6.7 3 82 613	44 85 51 4 6.8 2.2 51 118 A A	44 85 st 4 7.1 3.6 33 84 C S	44 85 81 3 6.2 3 11 80 C S 44 85 1 4 6.9 3.5 77 261 S C	44 85 1 4 7.3 2.9 38 101 C S	44 85 81 2 0.0 1.5 55 100 A A A 46 94 scl/l/cl 2 5.6 6.7 22 111 W W	46 94 cl 5 8.1 5.5 6 124 C S	94 fsl 4 7.1 2 100 168 C C	94 cl 4 5.8 5.5 83 210 A A 94 cl 4 5.6 5 28 142 S C	94 cl 5 8.0 6 5 99 C CRP 94 cl 5 4 6.7 4 8 34 126 C	94 sil 2 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	94 sil 2 6.6 3 23 108 A A	sil 2 6.3 4 100 182 C C 1 2 7.0 3 60 227 C C	94 cs 1 2 R S	46 94 cl 5 5.3 6 32 139 C C	41 100 sicl 3 7.3 2.5 2.5 310 C C 41 100 sil 2 7.9 1.2 9* 320 C C	41 100 sil 2 7.4 1.2 6* 320 C C 41 100 l 3 6.5 2 C C	41 100 1fs 3 6.8 0.7 C C	41 100 scl 3 6.8 2 41 100 scl 3 7.0 2 C C	41 100 sil 2 7.4 1.6 7* 416 C C	41 100 sil 2 7.3 1.4 6* 430 C. C.	48 100 151 4 7.2 1.8 16* 690 CRP C 48 100 151 4 7.2 1.8 16* 690 CRP C	48 100 1fs 3 7.2 1.8 16* 690 C CRP	48 100 1fs 3 7.2 1.8 16* 690 C CXP 40 83 sil 2 6.4 2.1 18 90 C C	40 83 sic 5 6.9 3.7 78 150 W C	40 85 811 4 6.1 1.3 55 125 C 45 100 sicl 3 6.2 4.2 12 125 SF W	45 100 sil 2 6.2 3.1 19 180 W SG 45 100 sicl 3 6.4 3 36 540 C W	45 100 sicl 2 6.2 3.1 20 240	45 90 sl 2 7.0 3.4 33 250 A A A	45 90 31 3 73 42 64 255 P C	45 90 81 3 0.3 5 01 105 C C 45 90 81 2 69 4.2 55 210 A C
	Lat Long Txt Dm pH OM P K 86 87	42 94 sil 3 6.4 3 72 922 39 98 sil 2 6.7 3 82 613	44 85 51 4 6.8 2.2 51 118 A A	44 85 st 4 7.1 3.6 33 84 C S	44 85 81 3 6.2 3 11 80 C S 44 85 1 4 6.9 3.5 77 261 S C	44 85 1 4 7.3 2.9 38 101 C S	44 85 81 2 0.0 1.5 55 100 A A A 46 94 scl/l/cl 2 5.6 6.7 22 111 W W	46 94 cl 5 8.1 5.5 6 124 C S	94 fsl 4 7.1 2 100 168 C C	94 cl 4 5.8 5.5 83 210 A A 94 cl 4 5.6 5 28 142 S C	94 cl 5 8.0 6 5 99 C CRP 94 cl 5 4 6.7 4 8 34 126 C	94 sil 2 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	94 sil 2 6.6 3 23 108 A A	94 sil 2 6.3 4 100 182 C C 94 l 2 7.0 3 60 227 C C	94 cs 1 2 R S	46 94 cl 5 5.3 6 32 139 C C	41 100 sicl 3 7.3 2.5 2.5 310 C C 41 100 sil 2 7.9 1.2 9* 320 C C	41 100 sil 2 7.4 1.2 6* 320 C C 41 100 l 3 6.5 2 C C	41 100 1fs 3 6.8 0.7 C C	41 100 scl 3 6.8 2 41 100 scl 3 7.0 2 C C	41 100 sil 2 7.4 1.6 7* 416 C C	41 100 sil 2 7.3 1.4 6* 430 C. C.	48 100 151 4 7.2 1.8 16* 690 CRP C 48 100 151 4 7.2 1.8 16* 690 CRP C	48 100 1fs 3 7.2 1.8 16* 690 C CRP	48 100 1fs 3 7.2 1.8 16* 690 C CXP 40 83 sil 2 6.4 2.1 18 90 C C	40 83 sic 5 6.9 3.7 78 150 W C	40 85 811 4 6.1 1.3 55 125 C 45 100 sicl 3 6.2 4.2 12 125 SF W	45 100 sil 2 6.2 3.1 19 180 W SG 45 100 sicl 3 6.4 3 36 540 C W	45 100 sicl 2 6.2 3.1 20 240	45 90 sl 2 7.0 3.4 33 250 A A A	45 90 31 3 73 42 64 255 P C	45 90 81 3 0.3 5 01 105 C C 45 90 81 2 69 4.2 55 210 A C
	I.D. Lat Long Txt Dm pH OM P K 86 87	91 42 94 sil 3 6.4 3 72 922 NAgrNT 39 98 sil 2 6.7 3 82 613	88 sl 4 6.8 2.2 51 118 A A	44 85 st 4 7.1 3.6 33 84 C S	44 85 81 3 6.2 3 11 80 C S 44 85 1 4 6.9 3.5 77 261 S C	44 85 1 4 7.3 2.9 38 101 C S	44 85 81 2 0.0 1.5 55 100 A A A 46 94 scl/l/cl 2 5.6 6.7 22 111 W W	46 94 cl 5 8.1 5.5 6 124 C S	94 fsl 4 7.1 2 100 168 C C	94 cl 4 5.8 5.5 83 210 A A 94 cl 4 5.6 5 28 142 S C	94 cl 5 8.0 6 5 99 C CRP 94 cl 5 4 6.7 4 8 34 126 C	94 sil 2 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	94 sil 2 6.6 3 23 108 A A	94 sil 2 6.3 4 100 182 C C 94 l 2 7.0 3 60 227 C C	94 cs 1 2 R S	46 94 cl 5 5.3 6 32 139 C C	sici 3 7.3 2.5 2.5 310 C C sil 2 7.9 1.2 9* 320 C C	41 100 sil 2 7.4 1.2 6* 320 C C 41 100 l 3 6.5 2 C C	41 100 1fs 3 6.8 0.7 C C	41 100 scl 3 6.8 2 41 100 scl 3 7.0 2 C C	41 100 sil 2 7.4 1.6 7* 416 C C	41 100 sil 2 7.3 1.4 6* 430 C. C.	48 100 151 4 7.2 1.8 16* 690 CRP C 48 100 151 4 7.2 1.8 16* 690 CRP C	48 100 1fs 3 7.2 1.8 16* 690 C CRP	48 100 1fs 3 7.2 1.8 16* 690 C CXP 40 83 sil 2 6.4 2.1 18 90 C C	40 83 sic 5 6.9 3.7 78 150 W C	40 85 811 4 6.1 1.3 55 125 C 45 100 sicl 3 6.2 4.2 12 125 SF W	100 sil 2 6.2 3.1 19 180 W SG 100 sicl 3 6.4 3 36 540 C W	45 100 sicl 2 6.2 3.1 20 240	45 90 sl 2 7.0 3.4 33 250 A A A	45 90 31 3 73 42 64 255 P C	90 811 3 6.3 5 91 103 C C 90 81 2 6.9 4.2 55 210 A C
	Lat Long Txt Dm pH OM P K 86 87	91 42 94 sil 3 6.4 3 72 922 NAgrNT 39 98 sil 2 6.7 3 82 613	44 85 51 4 6.8 2.2 51 118 A A	Eaton-N 44 85 sl 4 7,1 3,6 33 84 C S	44 85 81 3 6.2 3 11 80 C S 44 85 1 4 6.9 3.5 77 261 S C	MI NBPT1 44 85 1 4 7.3 2.9 38 101 C S	MI KBS-21 44 85 81 2 0.0 1.5 35 100 A A A MIN SwanLake 46 94 scl/Ucl 2 5.6 6.7 22 111 W W	MN A 46 94 cl 5 8.1 5.5 6 124 C S	MN C 46 94 fsl 4 7.1 2 100 168 C C	MN D 46 94 cl 4 5.8 5.5 83 210 A A A MN E 46 94 cl 4 5.6 5 28 142 S C	MN F 46 94 cl 5 8.0 6 5 99 C CRP	MN H 46 94 sil 2 4 A SwC	MN I 46 94 sil 2 4 C C C MN J 46 94 sil 2 6.6 3 23 108 A A	MN K 46 94 sil 2 6.3 4 100 182 C C MN I. 46 94 I 2 7.0 3 60 227 C C	MN M 46 94 cs 1 2 R S	MN 0 46 94 cl 5 5.3 6 32 139 C C	NE M-90 41 100 sicl 3 7.3 2.5 25 310 C C NE CI-90 41 100 sil 2 7.9 1.2 9* 320 C C	NE CD-90 41 100 sil 2 7.4 1.2 6* 320 C C NE CH5-90 41 100 l 3 6.5 2 C C	NE CH3-90 41 100 1fs 3 6.8 0.7 C C	NE CH9-90 41 100 sci 3 6.8 2 C C NE CH7-90 41 100 sci 3 7.0 2 C C	NE N.Plat100 41 100 sil 2 7,4 1.6 7* 416 C C	NE N.Plat300 41 100 sil 2 7.3 1.4 6* 430 C. C.	ND NW 48 100 fsl 4 7.2 1.8 16* 690 CRP C ND SF 48 100 fsl 4 7.2 1.8 16* 690 CRP C	ND SW 48 100 1fs 3 7.2 1.8 16* 690 C CRP	ND SE 48 100 1fs 3 7.2 1,8 16* 690 C CKP. OH Wooster 40 83 sil 2 6.4 2,1 18 90 C C	OH Hoyiville 40 83 sic 5 6.9 3.7 78 150 W C	SD Codington 45 100 sicl 3 6.2 4.2 12 125 SF W	SD Brookings 45 100 sil 2 6.2 3.1 19 180 W SG SD Highmore 45 100 sicl 3 6.4 3 36 540 C W	SD Clay 45 100 sicl 2 6.2 3.1 20 240	WI Hum-CC 45 90 sl 2 7.0 3.4 33 250 A A	WI Mar-CC 45 90 11 7.3 4.2 62 215 P C	WI Fen-CC 45 90 811 3 0.3 5 91 103 C WI ArI-CC 45 90 81 2 6.9 4.2 55 210 A C
	I.D. Lat Long Txt Dm pH OM P K 86 87	90 IA 91 42 94 sil 3 6.4 3 72 922 90 KS NAGR-NT 39 98 sil 2 6.7 3 82 613	90 Mi Shiawas 44 85 sl 4 68 2.2 51 118 A A	90 Mi Eaton-N 44 85 st 4 7.1 3.6 33 84 C S	90 MI Eaton-S 44 85 SI 3 6.2 3 11 80 C S 90 MI NBPT2 44 85 I 4 6.9 3.5 77 261 S C	90 MI NBPTI 44 85 1 4 7.3 2.9 38 101 C S	MI KBS-21 44 85 81 2 0.0 1.5 35 100 A A A MIN SwanLake 46 94 scl/Ucl 2 5.6 6.7 22 111 W W	90 MN A 46 94 cl 5 8.1 5.5 6 124 C S	90 MN C 46 94 fsl 4 7.1 2 100 168 C C	90 MN D 46 94 cl 4 5.8 5.5 83 210 A A A 90 MN E 46 94 cl 4 5.6 5 28 142 S C	90 MN F 46 94 cl 5 8.0 6 5 99 C CRP	90 MN H 46 94 sil 2 4 A swC	90 MN 1 46 94 sil 2 4 C C C 90 MN J 46 94 sil 2 6.6 3 23 108 A A	90 MN K 46 94 sil 2 6.3 4 100 182 C C 90 MN I. 46 94 l 2 7.0 3 60 227 C C	90 MN M 46 94 cs 1 2 R S	90 MN O 46 94 cl 5 5,3 6 32 139 C C	90 NE M-90 41 100 sicl 3 7.3 2.5 25 310 C C 90 NE CI-90 41 100 sil 2 7.9 1.2 9* 320 C C	90 NE CD-90 41 100 sil 2 7.4 1.2 6* 320 C C C ON NE CH5-90 41 100 1 3 6.5 2 C C	90 NE CH3-90 41 100 1fs 3 6.8 0.7 C C	90 NE CH9-90 41 100 scl 3 6.8 2 90 NE CH7-90 41 100 scl 3 7.0 2 C	90 NE N.Plat100 41 100 sil 2 7.4 1.6 7* 416 C C	90 NE N.Plat300 41 100 sil 2 7.3 1.4 6* 430 C. C.	90 ND NW 48 100 ISI 4 7.2 1.8 16* 690 CRP C 90 ND SF 48 100 ISI 4 7.2 1.8 16* 690 CRP C	90 ND SW 48 100 Ifs 3 7.2 1.8 16* 690 C CRP	90 ND SE 48 100 Its 3 7.2 1.8 16* 690 C CKP 90 OH Wooster 40 83 sil 2 6.4 2.1 18 90 C C	90 OH Hoyiville 40 83 sic 5 6.9 3.7 78 150 W C	90 SD Codington 45 100 sicl 3 6.2 4.2 12 125 SF W	90 SD Brookings 45 100 sil 2 6.2 3.1 19 180 W SG 90 SD Highmore 45 100 sicl 3 6.4 3 36 540 C W	90 SD Clay 45 100 sicl 2 6.2 3.1 20 240	90 WI Hum-CC 45 90 sl 2 7.0 3.4 33 250 A A	90 WI MER-CC 45 90 31 7 73 4.2 6 215 P C	Feb-CC 45 90 811 3 6.5 5 61 105 C C A Sha-CC 45 90 81 2 6.9 4.2 55 210 A C C

Appendix Table 1. NC-201 data base (continued).

	RA
YIELD	184 184
	770 133 150 150 150 150 150 150 150 150 150 150
	7.9 8.1.1 8.1.1 1.1.5 1.1.5 1.1.3 1.1.1 1.1.3 1.3
N-iON	$\sum_{i=0}^{\infty} \frac{1}{i} $
TIOS	2.5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1	$\frac{1}{16}$
# 5.1	E 2
11	100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TIN	25
į	
:	.11
8	
=	000000000000000000000000000000000000000
GROWN	.[]
8.	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
<u>~</u> &	COCOCOCOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
CROP (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
8	0440000444444 0888888888888888888888888
S7 88 R	O
CROP 88 8	08888888888888888888888888888888888888
CROP K 86 87 88 8	250 250 250 250 250 250 250 250 250 250
OROP CROP R 86 87 88 8	56 200 64 213 33 250 64 213 78 210 78 213 78 213
DH OM P K 86 87 88 8	3.7 36 200 4.5 49 330 4.5 49 330 4.5 49 330 4.5 49 330 4.6 4215 4.7 49 330 4.8 49 330 4.8 49 330 4.9 330 4.1 165 4.1 173 4.2 170 4.3 120 4.3 120 4.4 143 4.5 120 4.6 124 4.6 124 4.7 125 4.8 188 4.8 188 4.9 186 4.0 124 4.0 1
Dm pH OM P K 86 87 88 R	8 3.7 56 200 C C C C C C C C C C C C C C C C C C
Txt Dm pH OM P K 86 87 88 8	sil 3 6.8 3.7 56 200 C C c c c c c c c c c c c c c c c c c
Long Txt Dm pH OM P K 86 87 88 8	90 sil 3 6.8 3.7 56 200 0 sil 3 6.8 3.7 56 200 0 sil 3 7.3 42 45 49 330 0 sil 3 6.3 3 6.1 315 0 0 sil 3 6.3 3 6.1 165 0 0 sil 3 6.4 3.7 32 157 0 0 sil 3 6.4 3.7 32 157 0 0 sil 3 6.6 4.5 32 145 0 0 sil 3 6.6 4.5 32 143 0 0 sil 3 6.6 4.5 32 143 0 0 sil 3 6.6 4.5 32 143 0 0 sil 3 6.7 4.1 173 0 0 sil 3 6.7 4.1 166 0 0 sil 3 6.7 3.1 173 0 0 sil 3 7.3 4.1 173 0 0 sil 3 6.7 3.1 173 0 0 sil 3 6.7 3.1 173 0 0 sil 3 7.3 4.1 173 0 0 sil 3 7.3 4.1 173 0 0 sil 3 7.3 4.1 173 0 0 sil 3 6.7 3.1 173 0 0 sil 3 7.3 4.1 173 0 sil
Lat Long Txt Dm pH OM P K 86 87 88 8	45 90 sil 3 6.8 3.7 56 200 C C 45 90 sil 3 6.8 3.7 56 200 C C 45 90 sil 3 6.3 3 4.2 64 215 C C 45 90 sil 3 6.3 3 4.2 64 215 C C 6.2 6.2 6.3 1.3 7 32 157 C C C 6.2 6.3 1.3 7 32 157 C C C 6.2 6.3 1.3 7 32 157 C C C 6.3 1.3 7 4.2 64 215 C C C 6.3 1.3 7 4.2 64 215 C C C C 6.3 1.3 7 4.2 64 215 C C C C 6.3 1.3 7 4.2 64 215 C C C C 6.3 1.3 7 4.2 64 215 C C C C 6.3 1.3 7 4.2 64 215 C C C C 6.3 1.3 7 4.2 64 215 C C C C C 6.3 1.3 7 4.2 64 215 C C C C C 6.3 1.3 7 4.2 64 21 21 21 21 21 21 21 21 21 21 21 21 21
Lat Long Txt Dm pH OM P K 86 87 88 8	nn-Cm 45 90 sil 3 6.8 3.7 56 200 -CmC 45 90 sil 3 7.3 42 64 215 -CmC 45 90 sil 3 7.3 42 64 215 -CmC 45 90 sil 3 7.3 42 64 215 -CmC 45 90 sil 3 6.3 3 61 165 -CmC 45 90 sil 3 6.3 3 61 165 -CmC 45 90 sil 3 6.3 3 61 165 -CmC 45 90 sil 3 6.3 3 61 165 -CmC 45 90 sil 3 6.4 3.7 60 1155 -CmC 45 90 sil 3 6.4 3.7 60 1155 -CmC 45 90 sil 3 6.4 3.7 60 1155 -M-C 45 90 sil 3 6.4 3.7 60 1155 -M-C 45 90 sil 3 6.4 3.7 60 1155 -M-C 45 90 sil 3 6.4 3.7 60 126 -M-C 45 90 sil 3 6.4 3.7 60 126 -M-C 45 90 sil 3 6.6 3 6.7 150 -M-C 45 90 sil 3 6.6 3 6.7 150 -M-C 45 90 sil 3 6.6 3 6.7 150 -M-C 45 90 sil 3 6.6 3 6.7 150 -M-C 45 90 sil 3 6.6 3 6.7 150 -M-C 45 90 sil 3 6.6 3 6.7 150 -M-C 45 90 sil 3 6.6 3 6.7 150 -M-C 45 90 sil 3 6.6 3 6.7 150 -M-C 45 90 sil 3 6.6 3 6.7 150 -M-C 45 90 sil 3 6.6 3 6.7 150 -M-C 45 90 sil 3 6.6 3 6.7 150 -M-C 45 90 sil 3 6.6 3 120 -M-C 45 90 sil 3 6.7 150 -M-C 40 89 sil 4 6.3 173 -M-C 40 89 sil 4 6.3 173 -M-C 40 89 sil 4 6.3 18 -M-C 40 89 sil 4 6.3 18 -M-C 40 89 sil 5 6.1 13
te I.D. Lat Long Txt Drn pH OM P K 86 87 88 8	Mad-CC
State I.D. Lat Long Txt Drn pH OM P K 86 87 88 8	Will Mad-Cc 45 90 sil 3 6.8 3.7 56 200 C C Will Mad-Cc 45 90 sil 3 6.8 3.7 56 200 C C S Will Mac-Cnc 45 90 sil 3 6.8 3.7 56 200 C C 45 90 sil 3 6.3 4 2 6.1 15.0 4 2.1 15.0 5.
Yr State I.D. Lat Long Txt Drn pH OM P K 86 87 88 8	Madd-CC 45 90 sil 3 6.8 3.7 56 200 Madd-CC 45 90 sil 3 6.8 3.7 56 200 Madd-CC 45 90 sil 4 7.2 43 3250 Madd-CC 45 90 sil 3 7.3 4.2 64 215 Madd-CC 45 90 sil 3 7.3 4.2 64 215 Madd-CC 45 90 sil 3 6.1 3.7 3 4.2 64 215 Madd-CC 45 90 sil 3 6.1 3.7 3 135 Madd-CC 45 90 sil 3 6.1 3.7 3 135 Madd-CC 45 90 sil 3 6.1 3.7 3 250 Madd-CC 45 90 sil 3 6.1 3.7 3 250 Madd-CC 45 90 sil 3 6.1 3.7 155 Madd-CC 45 90 sil 3 6.2 3 1 185 Madd-CC 45 90 sil 3 6.2 3 1 185 Madd-CC 45 90 sil 3 6.2 3 1 185 Madd-CC 47 90 sil 3 6.2 3 1 185 Madd-CC 48 90 sil 3 6.3 3 6.1 150 Madd-CC 48 90 sil 3 6.3 3 6.1 150 Madd-CC 48 90 sil 3 6.3 3 6.1 150 Madd-CC 48 90 sil 3 6.3 3 6.1 150 Madd-CC 48 90 sil 3 6.3 3 6.1 150 Madd-CC 48 90 sil 3 6.3 3 6.1 150 Madd-CC 48 90 sil 3 6.3 3 6.1 150 Madd-CC 48 90 sil 3 6.3 3 6.1 173 Madd-CC 48 90 sil 4 6.5 3 113 Madd-CC 48 90 sil 5 6.2 3 1 180 Madd-CC 48 90 sil 6 6.3 3 1 180 Madd-CC 48 90 sil 7 6.3 3 1 180 Madd-CC 48 90 sil 8 6.1 180 Madd-CC 48 90 sil 8 6.1 180 Madd-CC 48 90 sil 8 6.1 180 Madd-CC 49 89 sil 8 6.1 180 Madd-CC 40

÷
ntinued
8
base
data
NC-201 d
_
Table
Appendix

11	. 11	00189088800000088228882288	200 200 200 200 200 200 200 200 200 200
	\Z	0001.6000 88 88 8000 80 60 60 60 60 60 60 60 60 60 60 60 60 60	0.4 % 5 % 5 % 5 % 5 % 5 % 5 % 5 % 5 % 5 %
	XIELD Yhi	1000 1000 1000 1000 1000 1000 1000 100	172 173 173 173 173 173 173 173 174 175 175 175 175 175 175 175 175 175 175
	× €	8311136 66 66 57 77 77 77 77 77 77 77 77 77 77 77 77	153 161 161 161 161 163 163 163 163 164 165 164 165 165 165 165 165 165 165 165 165 165
	PS2	21.12.1 1.0.1 1.0.1 1.0.2 1.0.2 1.0.3 1.0.	2.11 2.10
	지 이	25. 25. 25. 25. 25. 25. 25. 25. 25. 25.	123 1415.5 1417.5 1417.5 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10
۱	SOIL NO. N PP2 PS1	22.1 11.5.0 1.6.1 1.6.1 1.6.2 1.5.0 1.6.3	7.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5
	었음		8 6 6 7 4 6 6 4 8 8 1 1 6 6 1 8 1 8 1 8 1 8 1 8 1 8 1 8
	PP1		0.00
ı	SNT	156 157 157 157 157 157 157 157 157 157 157	162 162 163 163 163 163 163 163 163 163 163 163
	IULIAN DAY PPNT PSNT	121 121 130 130 130 130 112 112 100 100 100 100 100 100 100 110 100 10	FALL FALL 884 884 884 885 885 885 885 885 885 885
	iii Pi	=	\$
۱	Σ		000000000000000000000000000000000000000
	92		00000000000000000000000000000000000000
۱	<u>1</u>	1 9	
	8	3000000000000000000000000000000000000	04000000000000000000000000000000000000
	CROP GROWN	S CCCNNNNNC X AAACNUMAN	44000000000000000000000000000000000000
I	X	SS NO	A X X X X X X X X X X X X X X X X X X X
		5	
ľ			
١		XX	136 95 95 95 95 95 95 95 95 95 95 95 95 95
١		2	22222222222222222222222222222222222222
÷		22222222222222222222222222222222222222	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
NC-201 data base (continued).	1 8	MO	1260.000.000.000.000.000.000.000.000.000.
cont		Had 200 200 200 200 200 200 200 200 200 20	14444444444444444444444444444444444444
ase (T	Signature of the control of the cont
ita b	6		44444000000000000000000000000000000000
			64466666666666666666666666666666666666
Ž Č	-	14 C C C C C C C C C C C C C C C C C C C	22 47 4747 # EU.Q., Q., Q., C
z -	li	D. 000000000000000000000000000000000000	L NA NA N91-1 N91-1 N91-3 N91-3 N91-3 N91-5AA N91-5AA N91-5AA N91-5AA N91-8AA N91-8AA N91-8AA N91-8AA N91-8AA Autora Waterfown Hunora Waterfown Hunora Autora Ari-Coc Fen-Coc Fen-Coc Fen-Coc Fen-Coc Ari-Coc
<u>a</u>	}	109 109 109 109 109 109 109 109 109 109	
endix Table		S S S S S S S S S S S S S S S S S S S	WANTER SOURCE SO

12 12 12 12 13 14 15 15 15 15 15 15 15	11		
Y. Steel D. Le Loro Th During DAY Steel DAY	≥	7 55245588828828255588465554257855888858888888874787456455	3
Y. Steel D. Le Loro Th During DAY Steel DAY		2038 2038 2038 2038 2038 2038 2038 2038	1
Ye Stee D		452 4 5 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-
Y. Shee 1.D Let Long Tay Dan HH OM P. K. She Shee CDO CROWN P. M. Till LIND DAY 9. W. W. Mad-Cher 6.5 13 5 10 10 240 P. K. Shee 1.0 1 10 10 10 10 10 10 10 10 10 10 10 10	83	26.25 2.52 2.53	
Y. Shee 1.D Let Long Tay Dan HH OM P. K. She Shee CDO CROWN P. M. Till LIND DAY 9. W. W. Mad-Cher 6.5 13 5 10 10 240 P. K. Shee 1.0 1 10 10 10 10 10 10 10 10 10 10 10 10	ON S	2888-1-8-2-144-2-1-8-2-1	<u> </u>
Y. Shee 1.D Let Long Tay Dan HH OM P. K. She Shee CDO CROWN P. M. Till LIND DAY 9. W. W. Mad-Cher 6.5 13 5 10 10 240 P. K. Shee 1.0 1 10 10 10 10 10 10 10 10 10 10 10 10	SOIL	200741197774882982822144888348847892444848744488 611148788141887187744888488848878994488994881899181	2
Y. Shie 1.D. Let Long TAY Dm pil OM P. K shie GROP GROWN A TILLAN DM PIL NATION P. K shie D. C.	JI _	71.04.001.04.00.04.00.04.00.04.04.04.04.00.02.08.00.08.00.08.00.04.00.04.00.04.00.00.00.00.00.00.00.	1
Y. Sine LD. Lat Long Tay District P. Ke 87 Re 97 N P. Mad-Acc 49 Mad-Acc 40 Mad-Acc 40 Mad-Acc 40 Acc	II	0077480847771128844444881188887777788888887788788888888	•
Y. Sine LD. Lat Long Tay District P. Ke 87 Re 97 N P. Mad-Acc 49 Mad-Acc 40 Mad-Acc 40 Mad-Acc 40 Acc	NA PSS		
74. State 11D.		FA	!
Yr. State 11D. Lat Long Tax Dan PH OM P K 86 87 87 87 89 90 91 91 92 91 W1 Mad-Crc 45 90 81 3 65 35 91 10 240 P	▮ ∄		7
Tr. State	Σ)
Yr. State L.D. Lat Long Txt Dm pH OM P. K. 86 R. 86 97 R. 89 99 91 WH Mad-CheC. 45 90 sil 3 6.6 3.3 10 7 8 8 99 99 91 WH Mad-CheC. 45 90 sil 3 6.6 3.3 10 7 7 7 7 99 8 99 8 6.3 3.5 10 4 7	92	000000000000000000000000000000000000000)
Yr. State L.D. Lat Long Txt Dm pH OM P. K 866 87 91 WI Mad-CmC 45 90 sil 3 6.5 3.9 110 240 91 WI Mad-CmC 45 90 sil 3 6.6 3.5 110 240 92 KS CP-01 39 98 sic 3 6.1 3.5 11 239 92 KS HV-06 39 98 sic 1 6.6 3.5 12 280 92 KS HV-01 39 98 sic 1 6.6 3.3 12 280 92 KS HV-06 39 98 sic 1 6.6 3.3 12 20 92 KS HV-06 39 98 sic 1 6.6 3.3 12 20 92 KS HV-06 39 98 sic 1 6.6 3.3 12 20 92 KS HV-06 39 98 sic 1 6.6 3.3 12 14 92 KS HV-06 39 98 sic 1 6.6 7 13 14 92 KS HV-06 39 98 sic 1 6.6 7 14 158 92 KS HV-06 39 98 sic 2 6.7 1 14 158 92 KS HV-06 39 98 sic 2 6.6 3 14 158 92 KS	JI)
Yr. State L.D. Lat Long Txt Dm pH OM P. K 866 87 91 WI Mad-CmC 45 90 sil 3 6.5 3.9 110 240 91 WI Mad-CmC 45 90 sil 3 6.6 3.5 110 240 92 KS CP-01 39 98 sic 3 6.1 3.5 11 239 92 KS HV-06 39 98 sic 1 6.6 3.5 12 280 92 KS HV-01 39 98 sic 1 6.6 3.3 12 280 92 KS HV-06 39 98 sic 1 6.6 3.3 12 20 92 KS HV-06 39 98 sic 1 6.6 3.3 12 20 92 KS HV-06 39 98 sic 1 6.6 3.3 12 20 92 KS HV-06 39 98 sic 1 6.6 3.3 12 14 92 KS HV-06 39 98 sic 1 6.6 7 13 14 92 KS HV-06 39 98 sic 1 6.6 7 14 158 92 KS HV-06 39 98 sic 2 6.7 1 14 158 92 KS HV-06 39 98 sic 2 6.6 3 14 158 92 KS	N S S	O⊗OPOOPOODM≰ OOOOOOPOOODANOSEPPOO€⊗P⊗OOO⊗⊗OO	ì
Yr. State L.D. Lat Long Txt Dm pH OM P. K 866 87 91 WI Mad-CmC 45 90 sil 3 6.5 3.9 110 240 91 WI Mad-CmC 45 90 sil 3 6.6 3.5 110 240 92 KS CP-01 39 98 sic 3 6.1 3.5 11 239 92 KS HV-06 39 98 sic 1 6.6 3.5 12 280 92 KS HV-01 39 98 sic 1 6.6 3.3 12 280 92 KS HV-06 39 98 sic 1 6.6 3.3 12 20 92 KS HV-06 39 98 sic 1 6.6 3.3 12 20 92 KS HV-06 39 98 sic 1 6.6 3.3 12 20 92 KS HV-06 39 98 sic 1 6.6 3.3 12 14 92 KS HV-06 39 98 sic 1 6.6 7 13 14 92 KS HV-06 39 98 sic 1 6.6 7 14 158 92 KS HV-06 39 98 sic 2 6.7 1 14 158 92 KS HV-06 39 98 sic 2 6.6 3 14 158 92 KS	OP 08 89	OA O≱OONOOONOA¤‱OOOONONAOOOOO OONAAAOOAOOA	
Yr. State L.D. Lat Long Txt Dm pH OM P. K 866 87 91 WI Mad-CmC 45 90 sil 3 6.5 3.9 110 240 91 WI Mad-CmC 45 90 sil 3 6.6 3.5 110 240 92 KS CP-01 39 98 sic 3 6.1 3.5 11 239 92 KS HV-06 39 98 sic 1 6.6 3.5 12 280 92 KS HV-01 39 98 sic 1 6.6 3.3 12 280 92 KS HV-06 39 98 sic 1 6.6 3.3 12 20 92 KS HV-06 39 98 sic 1 6.6 3.3 12 20 92 KS HV-06 39 98 sic 1 6.6 3.3 12 20 92 KS HV-06 39 98 sic 1 6.6 3.3 12 14 92 KS HV-06 39 98 sic 1 6.6 7 13 14 92 KS HV-06 39 98 sic 1 6.6 7 14 158 92 KS HV-06 39 98 sic 2 6.7 1 14 158 92 KS HV-06 39 98 sic 2 6.6 3 14 158 92 KS	ଅଞ୍ଚ	∪∢	
Yr. State I.D. Lat Long Txt Dm pH OM P K 91 WI Mad-CmC 45 90 sil 3 65 3.9 110 240 92 KS Chell 39 98 sic 5 61 3.5 41 230 92 KS CF-01 39 98 sic 5 61 3.7 77 280 92 KS JW-065 39 98 sic 5 61 3.7 77 280 92 KS JW-06 39 98 sic 5 61 37 77 280 92 KS JW-06 39 98 sic 5 61 37 77 280 92 KS JW-06 39 98 sic 5 61 37 77 280 92 KS JW-06 39 98 sic 5 61 37 77 280 92 KS SG-04 39 98 sic 5 61 37 4 33 220 92 KS SG-04 4 59 8 sic 5 60 37 4 158 92 MN A 6 94 c 5 74 6 4 158 92 MN A 6 94 c 5 74 6 4 158 92 MN A 6 94 sic 5 60 7 153 92 MN A 6 94 sic 5 64 6 4 158 92 MN A 6 94 sic 5 64 7 153 92 MN A 6 94 sic 5 64 7 153 92 MN A 6 94 sic 5 64 7 153 93 MN A 6 94 sic 5 64 7 15 94 MN A 6 94 sic 5 64 7 13 95 MN A 6 94 sic 5 64 7 13 95 MN A 6 94 sic 5 64 8 12 95 MN A 6 94 sic 5 64 8 12 </td <td>87</td> <td></td> <td></td>	87		
Yr. State I.D. Lat Long Txt Dm pH OM P 191 WI Mad-CmC 45 90 sil 3 6.5 3.9 110 2 12 KS CF-01 39 98 sic 5 6.1 3.5 41 2 22 KS CF-01 39 98 sic 5 6.1 3.5 41 2 22 KS HV-065 39 98 sic 5 6.1 170 4 4 22 KS HV-065 39 98 sic 5 6.1 170 4 1 100 2 KS MG-02 39 98 sic 5 6.1 170 4 1 100 2 KS MG-02 39 98 sic 5 6.1 170 4 1 100 2 KS MG-02 39 98 sic 4 6.6 58 2 2 2 KS MG-02 39 98 sic 1 2 6.7 150 2 KS MG-02 39 98 sic 1 2 6.7 150 2 KS MG-02 39 98 sic 1 2 6.7 150 2 KS MG-02 39 98 sic 1 2 6.7 150 2 KS MG-02 39 98 sic 2 6.0 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	98		
Yr State I.D. Lat Long Txt Dm pH OM Mad-CmC 45 90 sil 3 65 3.5 19 19 WI Mad-CmC 45 90 sil 3 65 3.5 19 19 WI Mad-CmC 45 90 sil 3 65 3.5 19 2 KS CF-01 39 98 sicl 5 6.3 3.5 19 2 KS IW-01 39 98 sicl 5 6.3 3.5 19 2 KS IW-01 39 98 sicl 5 6.1 10 22 KS IW-01 39 98 sicl 5 6.1 10 22 KS IW-01 39 98 sicl 5 6.1 10 22 KS IW-01 39 98 sicl 5 6.1 10 22 KS IW-01 39 98 sicl 5 6.1 10 22 KS SG-03 39 98 sicl 5 6.1 10 22 KS SG-03 39 98 sicl 5 6.1 10 22 KS SG-03 39 98 sicl 5 6.1 10 22 KS SG-03 39 98 sicl 5 6.1 10 22 KS SG-03 39 98 sicl 5 6.1 10 22 KS SG-03 39 98 sicl 5 6.1 10 22 KS SG-03 39 98 sicl 5 6.1 10 22 KS SG-03 39 98 sicl 5 6.1 10 22 KS SG-03 39 98 sicl 5 6.1 10 22 KS SG-03 39 98 sicl 5 6.1 10 22 KS SG-03 39 98 sicl 5 6.1 10 22 KS SG-03 39 98 sicl 5 6.1 10 22 KS SG-03 39 98 sicl 5 6.1 10 22 KS SG-03 39 98 sicl 5 6.1 10 22 KS SG-03 39 98 sicl 5 6.1 10 22 KS SG-03 39 98 sicl 5 6.1 10 22 KS SG-03 39 98 sicl 5 6.1 10 22 KS SG-03 39 8 sicl 5 6.1 10 22 KS SG-03 39 8 sicl 5 6.1 10 22 KS SG-03 39 8 sicl 5 6.1 10 22 KS SG-03 39 8 sicl 5 6.1 10 22 KS SG-03 39 8 sicl 5 6.1 10 22 KS SG-03 39 8 sicl 5 6.1 10 22 KS SG-03 39 8 sicl 5 6.1 10 22 KS SG-03 39 8 sicl 5 6.1 10 22 KS SG-03 39 8 sicl 5 6.1 10 22 KS SG-03 39 8 sicl 5 6.1 10 22 KS SG-03 39 8 sicl 5 6.1 10 22 KS SG-03 39 8 sicl 5 6.1 10 22 KS SG-03 39 8 sicl 5 6.1 10 22 KS SG-03 39 8 sicl 5 6.1 10 22 KS SG-03 39 8 sicl 5 6.1 10 22 KS SG-03 39 8 sicl 5 7.3 13 13 13 13 13 13 13 13 13 13 13 13 13	×	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	;
Yr State I.D. Lat Long Txt Dm pH Mad-CmC 45 90 sil 3 6.5 91 WI Mad-AC 45 90 sil 3 6.5 92 KS CF-01 39 98 sicl 5 6.3 92 KS CF-01 39 98 sicl 5 6.3 92 KS HV-065 39 98 sicl 5 6.7 92 KS HV-065 39 98 sicl 5 6.7 92 KS HV-06 39 98 sicl 5 6.7 92 KS MG-02 39 98 sicl 5 6.7 92 MN A G-02 39 98 sicl 5 6.7 92 MN B HV-06 39 98 sicl 5 6.7 92 MN B HV-06 39 98 sicl 5 6.7 92 MN B HV-06 39 98 sicl 5 6.7 92 MN B HV-06 39 98 sicl 5 6.7 92 MN B HV-06 39 98 sicl 5 6.7 92 MN B HV-06 30 98 sicl 5 6.7 92 MN B HV-06 30 98 sicl 5 6.7 92 MN B HV-06 30 8 sicl 5 6.7 92 MN B HV-06 30 8 sicl 5 6.7 92 MN B HV-06 30 8 sicl 5 6.7 92 MN B HV-06 30 8 sicl 5 6.7 92 MN B HV-06 30 8 sicl 5 6.7 92 MN B HV-06 30 8 sicl 5 6.7 92 MN B HV-06 30 8 sicl 5 6.7 92 MN B HV-06 30 8 sicl 5 6.8 92 MN B HV-06 30 8 sicl 5 6.8 92 MN B HV-06 30 8 sicl 5 6.8 92 MN B HV-06 30 8 sicl 5 6.8 92 MN B HV-06 30 8 sicl 5 6.8 92 MN B HV-06 45 100 sicl 3 6.8 92 MN B HV-06 45 100 sicl 3 6.8 92 MN B HV-06 45 100 sicl 3 6.8 92 MN B HV-06 45 100 sicl 3 6.8 92 MN B HV-06 45 100 sicl 3 6.8 92 MN B HV-06 45 100 sicl 3 6.8 92 MN B HV-06 45 90 sicl 4 6.9 92 MN B HV-06 45 90 sicl 4 6.9 92 MN B HV-06 45 90 sicl 4 6.9 92 MN B HV-06 45 90 sicl 4 6.9 92 MN B HV-06 45 90 sicl 4 6.9 92 MN B HV-06 45 90 sicl 4 6.9	۵.	1100 162 177 177 177 177 177 177 177 177 177 17	;
Yr State I.D. Lat Long Txt Dm pH Mad-CmC 45 90 sil 3 6.5 91 WI Mad-CmC 45 90 sil 3 6.5 92 KS CF-01 39 98 sicl 5 6.1 92 KS HV-065 39 98 sicl 5 6.1 92 KS HV-06 39 98 sicl 5 6.1 92 KS SG-04 41 100 sicl 5 6.1 92 KS SG-04 41 100 sicl 3 6.1 92 KS SG-04 41 100 sicl 3 6.1 92 KS SG-04 41 100 sicl 3 6.1 92 KS SG-04 42 100 sicl 3 6.1	δ	83.50 83.50 84.60 84.60 84.60 84.60 84.60 84.60 84.60 84.60 84.60 84.60 84.60 84.60 84.60 84.60 84.60 84.60 84.60 84.60 84.60	
Yr State 1.D. Lat Long Txt 91 WI Mad-CmC 45 90 sil 92 Kis Chell 39 98 sic 92 Kis 1W-01 39 98 sic 92 Kis 1W-06 39 98 sic 92 Min A 46 94 sil 92 Min B 46 94 sil 92 Min E 69 M		20.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	
Yr State 1.D. Lat Long 91 Wil Mad-CmC 45 90 91 Wil Mad-CmC 45 90 92 KS CBelt 39 98 92 KS CF-01 39 98 98 92 KS HV-065 39 98 98 98 98 98 98 98 98 98 98 98 98 98		<u> </u>	
Yr State 1.D. Lat 1.W. Mad-CmC 45 91 WI Mad-CmC 45 92 KS CBelt 39 92 KS HV-065 39 92 KS HV-065 39 92 KS HV-065 39 92 KS HV-065 39 92 KS MN A HV-06 39 92 KS MN A MG-02 MN B A 46 92 MN B 46 92 MN B A 46 92 MN B 46 92 MN B A 46 92 MN B 46	: I		
Yr. State 1.D. L. 291 WI Mad-CmC 292 Kis CBelt 292 Kis IW-01 292 Kis IW-	Long		
22222222222222222222222222222222222222	Lat	r ₂	
22222222222222222222222222222222222222	I.D.	Mad-CmC CBelt CF-01 CF-01 CF-01 CF-01 CF-01 CF-01 CF-01 CF-01 CC	
222222222222222222222222222222222222222	ate		
		ががいいいいいいからららららららららととととととはことにはことにこここととしてストラー	4
	ب. اا	22222222222222222222222222222222222222	

Appendix Table 1. NC-201 data base (continued).

																						- 1
	RY	77 86 89	78	<u> </u>	8 %	888	288	105	S SS	888	388	44	828	: \$ 8	828	83	28 100	93	88	88	61	54
	YIELD Yhi	182 151 225	187	212 145	502	288	2025	212	202 169	184 207	153	202	117	134	151	123 121	124 149	157 146	128 144	160 148	177	165
	Ylo	140 130 200	146 148	218 145	167	280	282	\$22	28	101	135	ಜಿ ಜಿ	5,85	126	139	102 81	97 149	132 136	123 141	14 118	143 99	89
	PS2	5.6 6.3 5.3	5.5	9.4 11.5	4.6	25.2	, ,	32.3	5.4 5.4	5.4 4.5	6.S 4	2. 8. 2. 8.	24.8 5.5									
	NON PSI	7.3 6.8 7	6.7	11.3	10.3	<u> </u>	 	21 39.3	9	6.5 4.5	∞ ∾ ∞	6.3	7.7	10.5	13.	1.8	7 55.3	3 14.8 8.	7.8 12.8	5.5 5.5 5.5	6 2.8	7.2
ľ	SOIL PP2	2.9 0.9	2.7 1.5	8.6 8.5	5.9 0.0	35.		700	4. 4. 8. 6.	4.3 4.3	3.9 4.4	∞ m	3.3	8.5	5.3	2.5 2.6	3.2	2.5 7.6	5.6 10.4	9.5 5.1	6.3	3.8
	PP1	3.5 1 4.5	33	9 E.E.	7 2	. 6. 6. 5. 6. 5.	. . .	4. 86. 85. 86.	S.S.	₩ ₽	4 v	3 .S	3.00	7.3	3.5	3.5	4.7	ლ •	6.3 .8	8 6.5	6.5	4.8
		61 63 42	98	1 4	∞ ⊆	1	263	⊇ກ: :``	22	23	1	# K	202 202	2	87 60	88	97 87	5 2	£ 2	56.57	77 56	26
	JULIAN DAY PNT PSNT	20 16 19 16 05 14										10s 1.8 1.5			525						13 1	_
	PPN	12 12	121	22		225	2=:	25	22	2=	22	==	2=	==	= 22 =		_					_
	Till	≏ರಿರಿ	Žο	00	ا م دُ	35 S	ž o į	בֿם בֿ	ξŻ	ΔŖ	ŽΩ	FE	۵۵	ם	200	¥	ದರಿ	00	ಕ್ಷಕ್ತ		ĔΔ	۵
	M	000	00	0 %	00	000	-	o –	00	00	00	00	00	-0	-00	00	0	00	00	00	00	0
	92	ပပပ	ပပ	ပပ	O) O C	ان	۵.	ပပ	ပပ	ပပ	ပပ	۵.									
	16	SO S	s s	S	S	0 CO C	n co ·	<ຽ	တလ	လလ	SS	လ	ဥပ									
	CROP GROWN 8 89 90	ပပင	ပပ	ပပ	OC	ပပ	ں.	∀ ∪	ပပ	ပပ	ပပ	ပပ	ပပ	ပပ	၁၀၀	ပပ	ပပ	ပပ	ပပ	ပပ	ပပ	ပ
1	OP GI												•	SSS	0 00 00)	ပလ	s s	OO	,	လလ	
	X ₈₈												Í	ပပ	ادور)	ပပ	OU	υu	•	ပပ	
	87												ı	s so s	n				ပပ	,	SS	
	98	41																				
1																						
	×	¶	166 195	176	246	921	225	186 400	295 246	181 227	400 113	226 190	236 262									
ا.	_	75 274 74 181 66 220	-											28								
muca).	OM P	75 274 74 181 66 220	22.5	85 85	283	2 C S	38	£ 8	97 48	នន	100 26	ឧង	8£					95			. C 88	
continuea).	P P	5.3 75 274 6.6 74 181 7.0 66 220	22.5	85 85	283	2 C S	38	6.1 29 6.6 100	6.0 97 6.7 48	6.4 23 6.1 32	100 26	ឧង	8£		7.3	7.0	6.1	6.1		6.7	5.8	t 6.3
ase (confinied).	Dm pH OM P	3 5.3 75 274 2 6.6 74 181 3 70 66 220	4 6.3 21 1 5 5.9 54	4 6.3 65 5 6.8 79	30	4 6.9 53	38	6.1 29 6.6 100	97 48	4 6.4 23 3 6.1 32	3 5.2 100 5 6.8 26	4 6.8 63 3 6.1 25	5 7.1 90 3 6.8 75	s 6.1 5 7.0	2 N 4		~~ ~	SO C		কৰ	ii 5 6.7	il 4 6.3
ata base (continued).	Txt Dm pH OM P	sil 3 5.3 75 274 sil 2 6.6 74 181 sil 3 70 66 770	sil 4 6.3 21 sicl 5 5.9 54	sil 4 6.3 65	si 3 6.4	sil 4 6.9 53	sil 3 6.1 100	sil 5 6.1 29 sil 4 6.6 100	sil 3 6.0 97 sil 4 6.7 48	sil 3 6.1 32	sil 3 5.2 100 sicl 5 6.8 26	sil 4 6.8 63 sil 3 6.1 25	sic 5 7.1 90 sil 3 6.8 75	sicl 5 6.1 sicl 5 7.0	2		fsl 3	sicl S	sici s	Silis	১ ব	sil 4
) I data base (continued).	Long Txt Dm pH OM P	89 sil 3 5.3 75 274 89 sil 2 6.6 74 181 80 sil 3 70 66 270	89 sic 4 6.3 21 89 sic 5 5.9 54	89 sil 4 6.3 65	89 sil 3 6.4 30	89 sil 4 6.9 53	89 sil 4 5.9 100 89 sil 3 6.1 100	89 sil 5 6.1 29 89 sil 4 6.6 100	89 sil 3 6.0 97 89 sil 4 6.7 48	89 l 4 6.4 23 89 sil 3 6.1 32	89 sil 3 5.2 100 89 sicl 5 6.8 26	89 sil 4 6.8 63 89 sil 3 6.1 25	89 sicl 5 7.1 90 89 sil 3 6.8 75	89 sicl 5 6.1 89 sicl 5 7.0	89 81 89 81 81 81 80 81	200 200 200 200 200 200 200 200 200 200	89 fsl 3	89 sicl 5	89 sicl 5	89 89 81 81 81 84 84	89 cl. S	89 sil 4
C-201 data base (continued).	Txt Dm pH OM P	89 sil 3 5.3 75 274 89 sil 2 6.6 74 181 80 sil 3 70 66 270	89 sic 4 6.3 21 89 sic 5 5.9 54	7 40 89 sil 4 6.3 65	89 sil 3 6.4 30	40 89 sil 4 5.3 10 40 89 sil 4 6.9 53	40 89 sil 4 5.9 100 40 89 sil 3 6.1 100	40 89 sil 5 6.1 29 40 89 sil 4 6.6 100	40 89 sil 3 6.0 97 40 89 sil 4 6.7 48	40 89 l 4 6.4 23 40 89 sil 3 6.1 32	40 89 sil 3 5.2 100 40 89 sicl 5 6.8 26	0 89 sil 4 6.8 63 0 89 sil 3 6.1 25	0 89 sicl 5 7.1 90 0 89 sil 3 6.8 75	0 89 sicl 5 6.1 0 89 sicl 5 7.0	0 89 Sil 5	2000 2000 2000 2000	10 89 fsl 3	0 89 sicl 5	40 89 sicl 5	89 89 81 81 81 84 84	40 89 cl. 5	40 89 sil 4
le 1. NC-201 data base (continued).	Long Txt Dm pH OM P	40 89 sil 3 5.3 75 274 40 89 sil 2 6.6 74 181 40 89 sil 3 70 66 270	1 40 89 sid 4 6.3 21	TRET 40 89 sil 4 6.3 65	40 89 31 3 6.4 30	40 89 sil 4 5.3 10 40 89 sil 4 6.9 53	40 89 sil 4 5.9 100 40 89 sil 3 6.1 100	40 89 sil 5 6.1 29 40 89 sil 4 6.6 100	40 89 sil 3 6.0 97 40 89 sil 4 6.7 48	40 89 l 4 6.4 23 40 89 sil 3 6.1 32	40 89 sil 3 5.2 100 40 89 sicl 5 6.8 26	0 89 sil 4 6.8 63 0 89 sil 3 6.1 25	0 89 sicl 5 7.1 90 0 89 sil 3 6.8 75	0 89 sicl 5 6.1 0 89 sicl 5 7.0	0 89 Sil 5	2000 2000 2000 2000	10 89 fsl 3	0 89 sicl 5	iG 40 89 sicl 5	40 89 Sill 4	S 40 89 cl 5	40 89 sil 4
	I.D. Lat Long Txt Dm pH OM P	LONG 40 89 sil 3 5.3 75 274 KEMP 40 89 sil 2 6.6 74 181 KOMB 40 89 sil 3 70 66 220	1 40 89 sid 4 6.3 21	TRET 40 89 sil 4 6.3 65	89 sil 3 6.4 30	KEIF 40 89 SII 4 5.3 10 SANSON 40 89 SII 4 6.9 53	SHERIZ 40 89 sil 4 5.9 100 WENZ 40 89 sil 3 6.1 100	ZEHI 40 89 sil 5 6.1 29 BROWN 40 89 sil 4 6.6 100	COLBURN 40 89 sil 3 6.0 97 DAVIS2 40 89 sil 4 6.7 48	FECKE 40 89 1 4 6.4 23 HEST1 40 89 sil 3 6.1 32	HOFFMAN 40 89 sil 3 5.2 100 BLUE 40 89 sicl 5 6.8 26	DAVISI 40 89 sil 4 6.8 63 HESTI 40 89 sil 3 6.1 25	KELLOGG 40 89 sicl 5 7.1 90 KOCH 40 89 sil 3 6.8 75	GUCKER 40 89 sicl 5 6.1 BLUE 40 89 sicl 5 7.0	WENZEL 40 89 Sil 3 BEHRNS 40 89 Sil 5 DEVORE 40 89 Sil 4	GERLING 40 89 sl 3	HUSTEDII 40 89 fsl 3	WILKEN 40 89 sicl 5	KELLOGG 40 89 siel 5 KOCH 40 89 siel 3	DAVIS 40 89 sil 4	HIGGINS 40 89 cl 5 BEHRENDS 40 89 sil 4	FARMER 40 89 sil 4
	State 1.D. Lat Long Txt Dm pH OM P	IL LONG 40 89 sil 3 5.3 75 274 IL KEMP 40 89 sil 2 6.6 74 181 IL KAMP 40 89 sil 3 70 66 270	II. OCONN 40 89 sic 5 59 54 II. PIERSON 40 89 sic 5 59 54	IL ROSENTRET 40 89 sil 4 6.3 65	IL LLIC 40 89 sil 3 6.4 30	IL SANSON 40 89 sil 4 6.9 53	IL SHEKTZ 40 89 sil 4 5.9 100 IL WENZ 40 89 sil 3 6.1 100	IL ZEH1 40 89 sil 5 6.1 29 IL BROWN 40 89 sil 4 6.6 100	IL COLBURN 40 89 sil 3 6.0 97 II. DAVIS2 40 89 sil 4 6.7 48	IL FECKE 40 89 1 4 6.4 23 IL HESTI 40 89 sil 3 6.1 32	IL HOFFMAN 40 89 sil 3 5.2 100 II. BLUE 40 89 sicl 5 6.8 26	IL DAVISI 40 89 sil 4 6.8 63 IL HESTI 40 89 sil 3 6.1 25	IL KELLOGG 40 89 sicl 5 7.1 90 IL KOCH 40 89 sil 3 6.8 75	IL GUCKER 40 89 sicl 5 6.1 IL BLUE 40 89 sicl 5 7.0	WENZEL 40 89 511 3 BEHRNS 40 89 511 5 FEVORE 40 89 611 4	IL GERLING 40 89 sl 3	IL HUSTEDII 40 89 fsl 3	IL WILKEN 40 89 sicl 5	1L KELLOGG 40 89 sicl 5	IL DAVIS 40 89 sil 4	IL HIGGINS 40 89 cl 5	IL FARMER 40 89 sil 4
Appendix Table 1. NC-201 data base (continued).	I.D. Lat Long Txt Dm pH OM P	92 IL LONG 40 89 sil 3 5.3 75 274 92 IL KEMP 40 89 sil 2 6.6 74 181 03 II KOMB 40 89 sil 3 70 66 270	72 IL COMB 40 89 311 4 6.3 21 92 IL PIERSON 40 89 316 5 5.9 54	92 IL ROSENTRET 40 89 sil 4 6.3 65	92 IL LLIC 40 89 sil 3 6:4 30	92 IL SANSON 40 89 sil 4 6.9 53	92 IL SHEKTZ 40 89 sil 4 5.9 100 92 IL WENZ 40 89 sil 3 6.1 100	92 IL ZEH1 40 89 sil \$ 6.1 29 92 IL BROWN 40 89 sil 4 6.6 100	92 IL COLBURN 40 89 sil 3 6.0 97 92 IL DAVIS2 40 89 sil 4 6.7 48	92 IL FECKE 40 89 I 4 6.4 23 92 IL HESTI 40 89 sil 3 6.1 32	92 IL HOFFMAN 40 89 sil 3 5.2 100 92 II. RIJJE 40 89 siel 5 6.8 26	92 IL DAVISI 40 89 sil 4 6.8 63 92 IL HESTI 40 89 sil 3 6.1 25	92 IL KELLOGG 40 89 sicl 5 7.1 90 92 IL KOCH 40 89 sil 3 6.8 75	90 IL GUCKER 40 89 sicl 5 6.1 90 IL BLUE 40 89 sicl 5 7.0	WENZEL 40 89 Sil 3 BEHRNS 40 89 Sil 5 DEVORE 40 89 Sil 4	90 IL GERLING 40 89 sl 3	90 IL HUSTEDII 40 89 fsl 3	90 IL WILKEN 40 89 sicl 5	90 IL KELLOGG 40 89 sicl 5	90 IL DAVIS 40 89 sil 4	90 IL HIGGINS 40 89 cl 5 90 IL BEHRENDS 40 89 sil 4	90 IL FARMER 40 89 sil 4

Key to Headings in Appendix Table 1.

Yr = Year of data collection. I.D. = Site identification supplied by cooperating scientist. Long = Average longitude for each state. pH = Soil surface pH determined in 1:1 soil:H ₂ O. OM = % organic matter (M = medium). P = ppm soil surface extractable phosphorus by Bray and Kurtz-PI or *Olson-sodium bicarbonate. K = ppm soil surface exchangeable potassium	us years, where: Scientific name Medicago saiva L. Hordeum vulgare L. Zea mays L. Trifolium sp. L. Lupinus sp. L. Lupinus sp. L. Avena sativa L. Secale cereale L. Secale L. Secale L. Secale L. Secale L. Secale Sp. Hollspaugh & Chase Helianthus annuus L. Sorghum bicolor (L.) Moench X Triticosecale spp. X Triticasecale spp. Triticasecale spp. Triticasecale spp. Triticasecale spp. Triticasecale spp.	Till = Tillage system employed in study year, where: MP - moldboard plow or turn plow; CP - chisel plow RT - ridge tillage NT - no-till D - disk FC - field cultivation	VIELD = Com grain yield in bushels/acre @ 15.5% moisture (1 bu=56lb): Ylo - yield with no fertilizer N (check) Yhi - yield @ non-N-limiting treatment RY = Percent relative yield = [mean check (0 N) yield / mean non-N limiting yield] x 100
Ref = Numerical reference for each site. State = State where site was located. Lat = Average latitude for state. Txt = Soil surface texture. Drn = Drainage class, where: 1) excessively drained; 2) well drained; 3)moderately well drained; 4) somewhat poorly drained; 5) poorly drained.	Crop = Record of crop or cropping system for study year and previous years, where: Symbol Alfalfa Alfalfa Barley Com CRP	M = Manure history, where: 0) none; 1) applied in study year; 2) applied 1 yr prior to study year; 3) applied 2 yr prior to study year; 4) applied 1 and 2 yr prior to study year; 5) applied study year and 1 yr prior; 6) applied study year and 2 yr prior; 7) applied study year and 2 yr prior;	Julian Day = day of study year when PPNT or PSNT sample was taken Soil NO ₃ -N = ppm soil nitrate, where: PP1 - PPNT 0- to 1-foot depth; PP2 - PPNT 0- to 2-foot depth; PS1 - PSNT 0- to 1-foot depth; PS2 - PSNT 0- to 2-foot depth.