Impact of Nitrogen Application Timing on Corn Production

John E. Sawyer Daniel W. Barker John P. Lundvall Department of Agronomy Iowa State University

Summary Of Timing Studies

- Projects in 2004-2015
- Nine studies
- Sixty five site-years
- Nitrogen application timings
 - Fall, spring preplant, at planting, split/sidedress, mid-vegetative, late-vegetative

2004-2015 High Precipitation Period

Accumulated Precipitation (in): Departure from Mean January 1, 2004 to December 31, 2015

cli-MATE: MRCC Application Tools Environment Generated at: 10/18/2016 11:00:13 AM CDT

IOWA STATE UNIVERSITY Extension and Outreach

Anhydrous Ammonia Timing Study

- Late fall (< 50°F), spring preplant (mid-April to mid-May) & split/sidedress (V2-V4 corn stage, early-mid June)
- Five N rates
- No nitrification inhibitor
- Corn following soybean
- Three years (2007-2009)
- Central Iowa

Preplant and Split/Sidedress Anhydrous Ammonia

IOWA STATE UNIVERSITY Extension and Outreach

Springtime Timing Studies

- Spring preplant or at-planting & split/sidedress
- Sidedress at V4 V9 corn growth stage
- Six to eight N rates
- UAN, urea, ammonium nitrate
- Corn following soybean
- Two years (2014-2015)
- Nine site-years across Iowa

Preplant or At-Planting and Split/Sidedress

Sawyer, Lundvall, Hall, Barker 2015

IOWA STATE UNIVERSITY Extension and Outreach

Preplant or At-Planting and Split/Sidedress

		Mean	EONR	Mean YEONR			
Category	Sites	Pre	Split	Pre	Split		
		lb N/acre		bu/acre			
Split EONR 10 lb N/acre lower than Preplant	1	116	95	187	184		
Preplant EONR 10 lb N/acre lower than Split	3	108	126	203	207		
Preplant and Split EONR within 10 lb N/acre	4	153	147	217	217		
Overall Mean	8	132	132	208	209		
Chariton	1	250*	250*	134	129		
Based on N response equations and 0.10 N:corn price ratio.							

Sawyer, Lundvall, Hall, and Barker, 2015.

In-Season Sensor-Based Project

- Spring preplant or early sidedress (Pre-N)
- In-season mid- to late-vegetative SPAD meterbased high clearance (Post-sensing N)
- Four Pre-N rates plus sensor-based N
- UAN Post-sensing N product
- Corn following soybean
- Three years (2004-2006)
- Thirty on-farm sites across lowa with fieldlength strips

N Applied Pre and Post-Sensing

		Number of Sites		
N Application	Mean	with Post-Sensing	Relative	Mean
Treatment	Total N Applied [†]	N Applied	CM Value	Yield [‡]
	lb N/acre	n		bu/acre
0	0		0.82	141d
60	60		0.93	177c
60+	115	28		185b
120	120		0.97	192a
120+	131	9		193a
240	240		1.00	197a

Sum of Pre-N and Post-sensing N rate, averaged across all 30 SC sites.

[‡] Mean yields are not significantly different when followed by the same letter $(P \le 0.10)$.

Hawkins, Lundvall, Sawyer, 2006

EONR(0.10) for Pre-N rates = 132 lb N/acre

Mid-Vegetative Sensor-Based Timing Study

- Spring preplant urea (PP-N)
- Mid-vegetative (V10 stage) active canopy sensor-based application (PP+S-N)
- Seven PP-N rates plus sensor-based N
- UAN Post-sensing N product
- Corn following soybean
- Two years (2009-2010)
- Central Iowa, new site each year

N Applied Preplant and Mid-Vegetative Based on Canopy Sensing

Mid-Vegetative Sensor-Based Timing Project

- Spring preplant UAN or urea
- Mid-vegetative active canopy sensor-based application (V10 stage)
- Six preplant rates plus sensor-based N
- Broadcast urea post-sensing N
- Corn following soybean
- Two years (2012-2013)
- Eight sites

N Applied Preplant and Mid-Vegetative Based on Canopy Sensing

8 SC Sites, 2012-2013. Barker and Sawyer, 2013. In-season N applied at V10 corn stage.

Mid-Vegetative Sensor-Based Demonstration

- Preplant N Rate (PP-N)
 - Farmer rate and product (Fall, Sp, Split, NH₃, NS, UAN)
- Preplant + In-Season Fixed Rate (PP+F-N)
 - Farmer rate + 100 lb urea/acre (46 lb N)
- Preplant + In-Season Sensor Rate (PP+S-N)
 - Farmer rate + 3 potential sensor-based rates
 - Un-calibrated NDVI (no relative index)
 - 1) ≥0.85 no N; 2) 0.85-0.50 100 lb urea/acre (46 lb N);
 3) <0.50 150 lb urea/acre (70 lb N)
 - Sensor-based N applied June 28–30, 2011

Thirteen fields

Sensor-Based Demonstration SC

Application	1	2	3	4	5	6	
	bu/acre						
PP-N	218	213	211	212	212	198	
PP+F-N	217	214	199	194	223	193	
PP+S-N	219	206	209	222	205	198	
Sign. (0.05)	NS	NS	NS	NS	NS	NS	
	Ib N/acre						
PP-N	159	161	160	160	160	160	
PP+F-N	205	206	205	205	205	205	
PP+S-N	209	212	208	209	206	210	
NDVI	0.699	0.674	0.691	0.693	0.703	0.682	
Barker and Sawyer, 2011							

Sensor-Based Demonstration CC

Application	7	8	9	10	11	12	14
	bu/acre						
PP-N	204	209	199	214	224	214	231
PP+F-N	202	213	199	221	224	217	245
PP+S-N	210	211	198		223		
Sign. (0.05)	NS	NS	NS	NS	NS	NS	*
	Ib N/acre						
PP-N	120	195	208	192	192	250	200
PP+F-N	165	240	254	237	238	295	246
PP+S-N	167	244	255		230		
+ Manure PP	Yes						Yes
NDVI	0.717	0.690	0.696	0.723	0.714	0.696	0.719
Barker and Sawyer, 2011							

Time of Nitrogen Application Summary

- Fall anhydrous ammonia less efficient than spring or split/sidedress
- Generally, no difference in corn yield or EONR between springtime N application timing; preplant, split/sidedress, or mid-vegetative
- If a springtime timing difference, not consistent between preplant and sidedress
- Even in extremely wet and N responsive conditions, similar corn yield and EONR