In-Field Nitrogen Management, Nitrogen Loss, and Crop Production

Nitrogen and Water Week

Prepared by John E. Sawyer Professor Department of Agronomy Iowa State University

Current Situation

- Concern for nitrate-N concentrations in local and regional water systems
- Hypoxia Action Plan in 2008 called for development and implementation of comprehensive N and P reduction strategies for states in the Mississippi/Atchafalaya River Basin

Nitrogen Reduction Goals

- Many states have implemented Nutrient Reduction Strategies with suggested practices
- To reach goal of 45% total N load reduction
 Non-point in Iowa 41%
 - All practices are needed
 - In-field agronomic N management
 - Cropping practices and land use
 - Edge-of-field practices

Nitrate-N Reduction Practices

	Practice	% Nitrate-N Reduction [Avg. (Std. Dev.)]	% Corn Yield Change [Avg. (Std. Dev.)]
	Timing (Fall to spring)	6 (25)	4 (16)
	Timing (Preplant to sidedress)	7 (37)	0 (3)
N-Mgt.	Nitrogen Application Rate (to MRTN rate from CNRC, effect depends on starting N rate)	10	-1
	Fall with nitrapyrin (with AA) compared to without	9 (19)	6 (22)
	Rye Cover Crop	31 (29)	-6 (7)

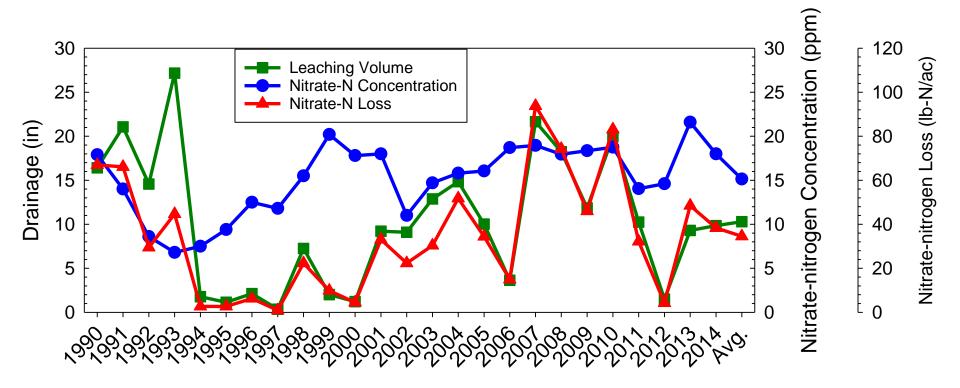
SP 435 A

Nitrate-N Reduction Practices

	Practice	% Nitrate-N Reduction [Avg. (Std. Dev.)]	% Corn Yield Change [Avg. (Std. Dev.)]
	Perennial – Pasture/Land retirement	85 (9)	
Land Use	Perennial – Energy Crops	72 (23)	
	Extended Rotations (at least 2 years alfalfa in a 4 or 5 year rotation	42 (12)	7(7)

SP 435 A

Nitrate-N Reduction Practices


	Practice	% Nitrate-N Reduction [Avg. (Std. Dev.)]	% Corn Yield Change [Avg. (Std. Dev.)]
	Controlled Drainage	33 (32)*	
	Shallow Drainage	32 (15)*	
Edge-of-	Wetlands	52	
Field	Bioreactors	43 (21)	
	Buffers	91 (20)**	
	Saturated Buffers	50 (13)	

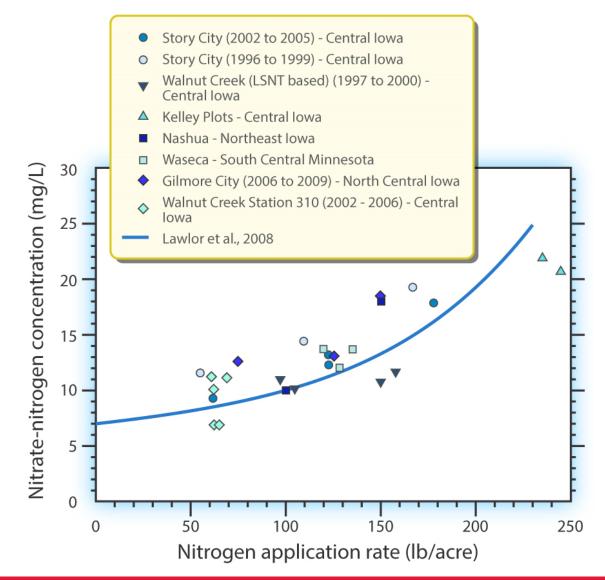
SP 435 A

* Load reduction not concentration reduction.

**Concentration reduction of that water interacts with active zone below the buffer.

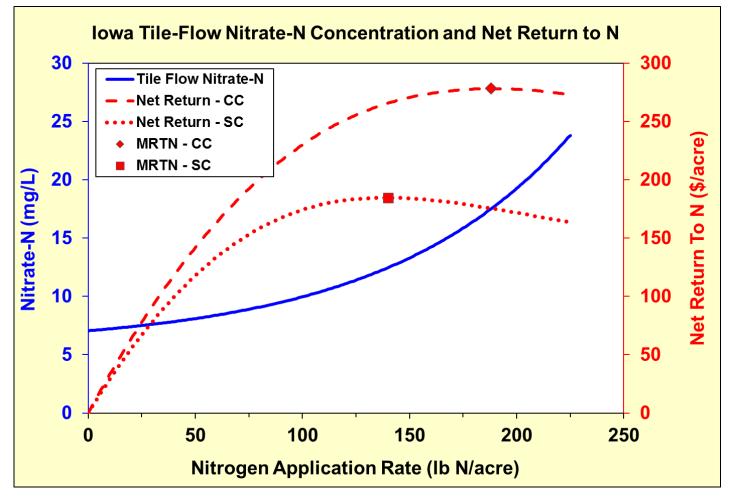
Tile-Flow and Nitrate-N loss Across Time (Gilmore City Ag Drainage Site)

Combined Corn-Soybean System – Same N management – Early Spring Sidedress at 150-160 lb-N/acre

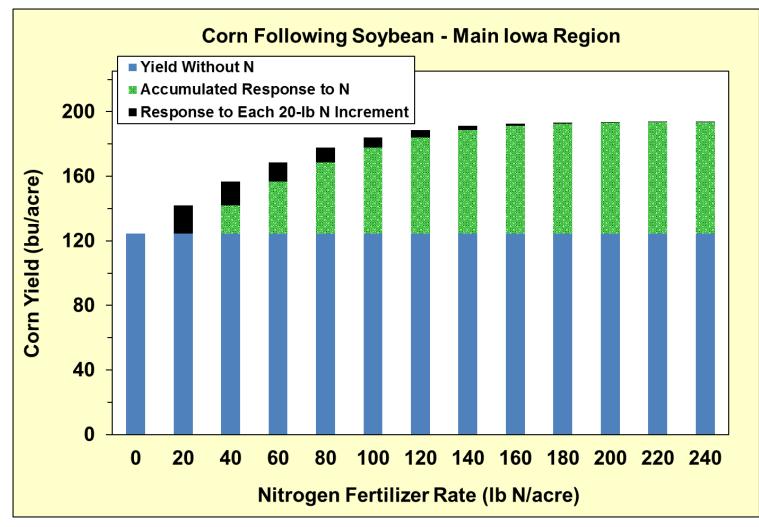

IOWA STATE UNIVERSITY Extension and Outreach

M.J. Helmers, Ag. & Biosystems Eng.

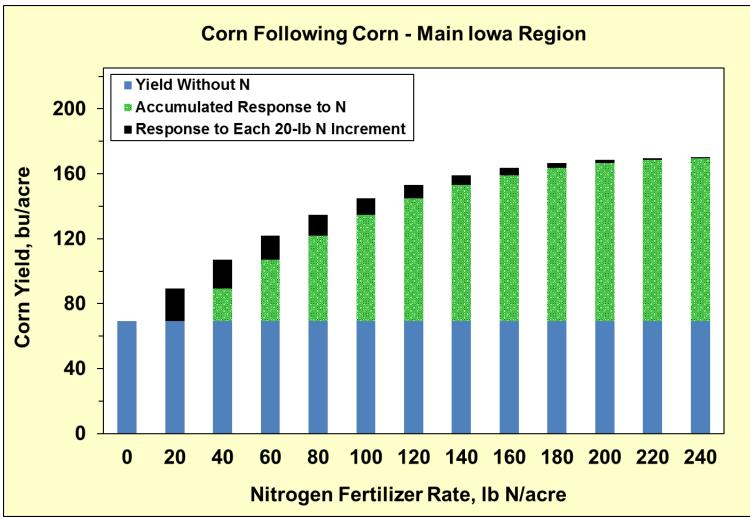
Nitrogen Rate


- The impact of N rate on nitrate-N in tile drainage or groundwater recharge depends on the initial N rate compared to a recommended rate (MRTN rate)
- The reduction strategy indicates 10% reduction, but it can be more or less than that depending on actual N rate being used

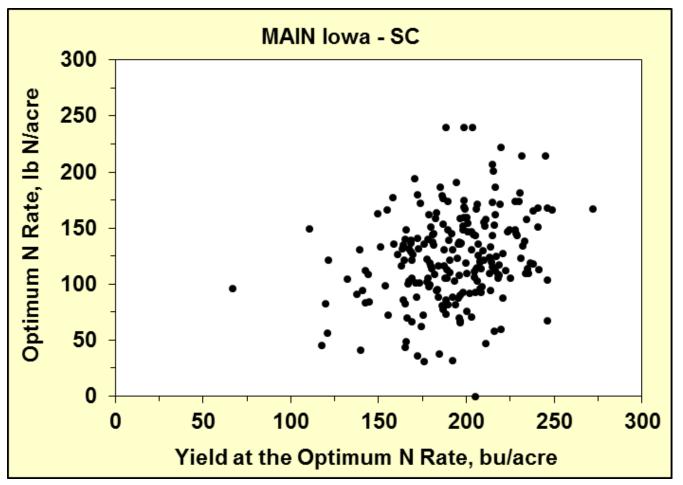
Nitrate-N Concentration in Tile Drainage


Iowa Nutrient Reduction Strategy

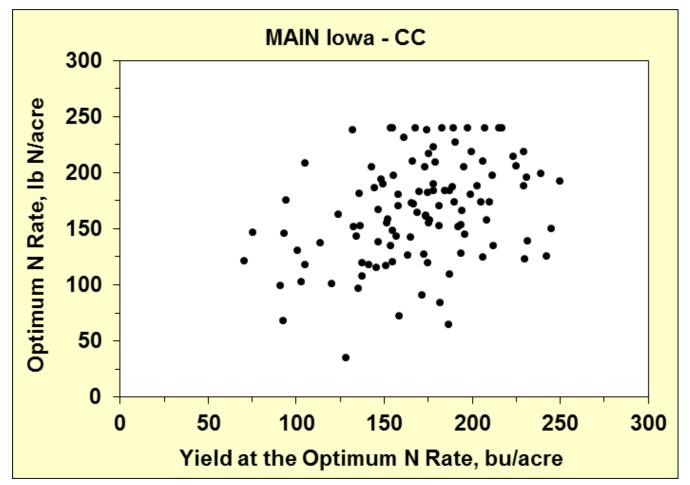
Net Return to Nitrogen Application and Nitrate-N Concentration in Tile Drainage

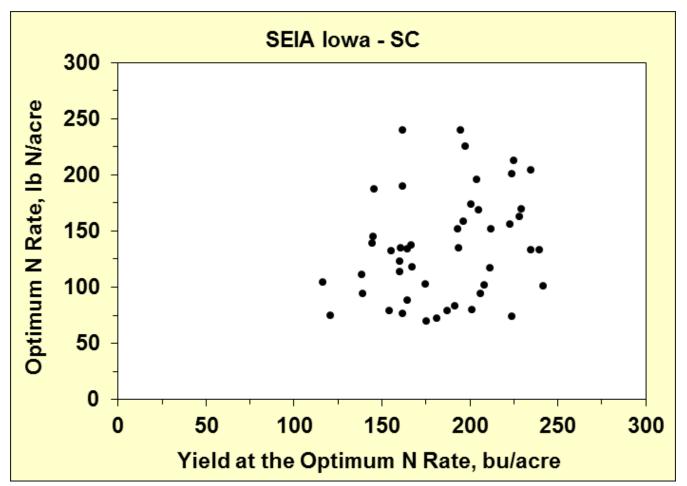

Nitrogen at \$0.35/lb N and corn at \$3.50/bu

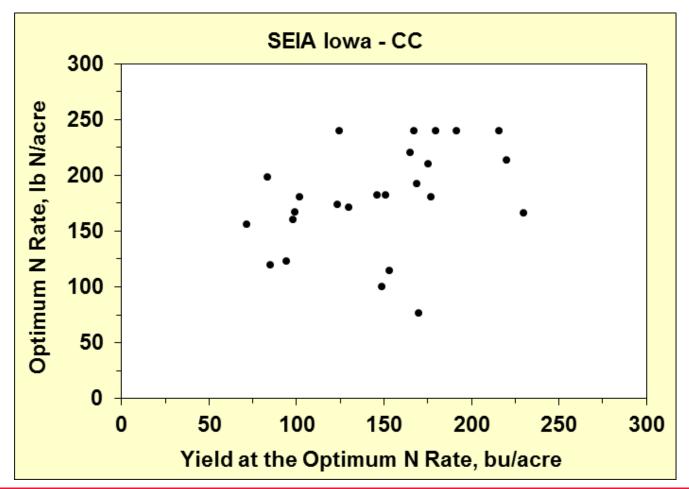
Nitrogen Needed for Corn – But There Is A Diminishing Return to Increasing Nitrogen Rate

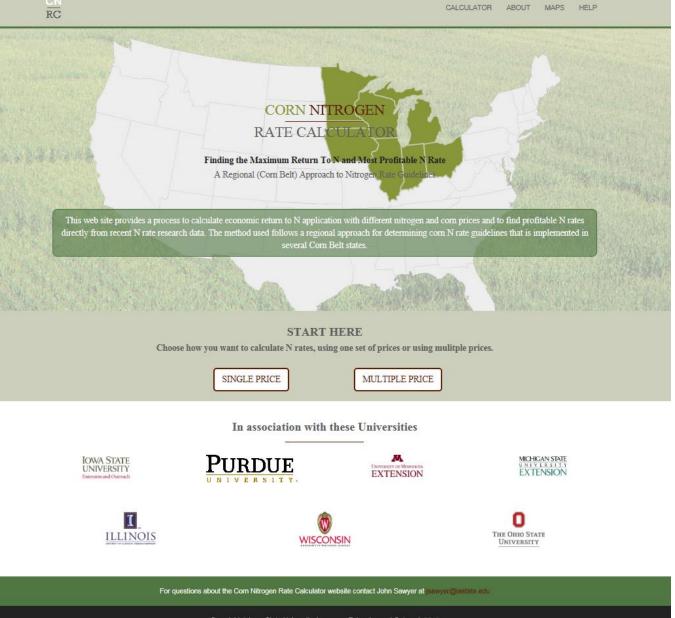


IOWA STATE UNIVERSITY Extension and Outreach


Nitrogen Needed for Corn – But There Is A Diminishing Return to Increasing Nitrogen Rate




IOWA STATE UNIVERSITY Extension and Outreach



IOWA STATE UNIVERSITY Extension and Outreach

Copyright I lowa State University Agronomy Extension and Outreach 2016

IOWA STATE UNIVERSITY Extension and Outreach

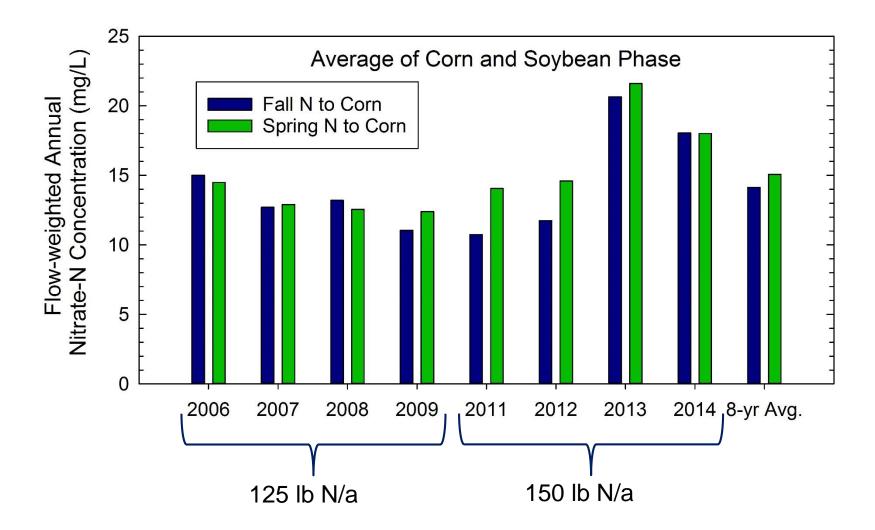
http://cnrc.agron.iastate.edu/

Nitrogen Rates for Corn MRTN and Profitable Range

Nitrogen rate guidelines for Iowa continuous corn and corn following soybean based on output of the Corn Nitrogen Rate Calculator (CNRC).

Price	Corn Following Soybean		Corn Foll	owing Corn	
Ratio	Rate	Range	Rate	Range	
\$/lb N:\$/bu		Ib N	′acre		
<u>Main Iowa Reg</u>	gion				
0.05	160	143 - 177	210	195 - 228	
0.10	140	126 - 152	188	175 - 203	
0.15	124	113 - 136	171	157 - 185	
0.20	113	103 - 123	154	143 - 166	
Southeast Iowa (Soil Regions 17, 21, 22)					
0.05	180	162 - 201	239	220 - 240	
0.10	154	140 - 169	204	187 - 221	
0.15	136	127 - 149	183	176 - 195	
0.20	128	117 - 137	180	166 - 186	

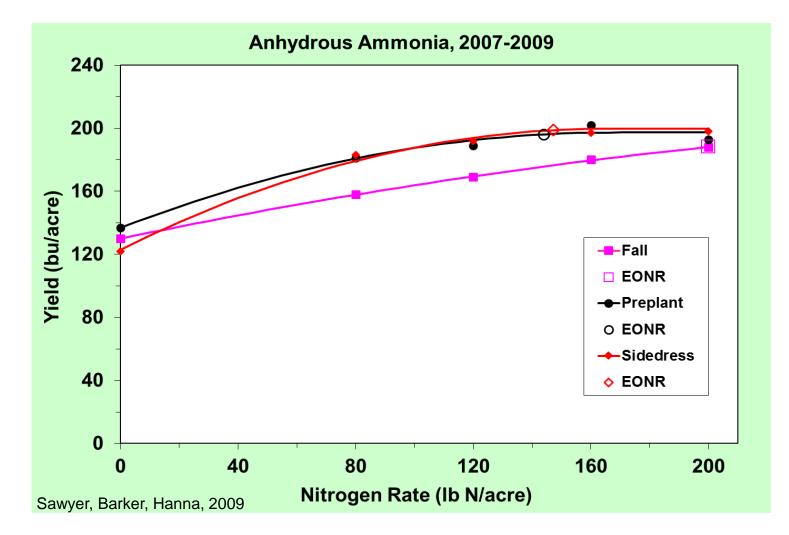
Price per lb N divided by the expected corn price. Corn held at \$3.50/bu for all price ratios. CNRC as of April, 2017 (http://cnrc.agron.iastate.edu/).


IOWA STATE UNIVERSITY Extension and Outreach

CNRC and CROP 3073

Application Timing

- Nitrogen application timing has less impact on nitrate-N loss to water systems and corn yield than other in-field N management practices
- Nitrate-N loss is similar within the corn year and soybean year


Impact of N Application Timing (2006-2014) (Gilmore City Ag Drainage Site)

IOWA STATE UNIVERSITY Extension and Outreach

M.J. Helmers, Ag. & Biosystems Eng.

Fall, Preplant, and Split/Sidedress Anhydrous Ammonia

IOWA STATE UNIVERSITY Extension and Outreach

Fall vs. Spring Urea Application

Northern Research Farm, 2007-2010							
	N rate applied to corn, lb N/acre						
Crop	0 80 160 240						
	bu/acre						
Corn, sp urea	59 126 158 186						
Corn, fall urea 62 99 151 165							
Continuous corn. Mallarino and Rueber, 2010.							

Preplant (At-Planting) vs. Split/Sidedress UAN, Urea, Ammonium Nitrate

		Mean EONR		Mean Y	EONR
Category	Sites	Pre	Split	Pre	Split
		lb N/acre		bu/acre	
Split EONR at least 10 lb N/acre lower than Preplant	4	167	138	202	201
Preplant EONR at least 10 lb N/acre lower than Split	3	108	126	203	206
Preplant and Split EONR within 10 lb N/acre	7	151	147	221	221
Overall Mean	14	146	140	212	212

Based on N response equations and 0.10 N:corn price ratio. Sawyer, Lundvall, Hall, and Barker, 2014-2016.

Nitrogen Applied Pre and Pre+Post-Sensing

N Application Treatment ¹	Mean Total N Applied ²	Sites with Post-Sensing N Applied	Mean Yield ³
	lb N/acre	n	bu/acre
0	0		141d
60	60		177c
60+	115	28	185b
120	120		192a
120+	131	9	193a
240	240		197a

¹ Pre-N rates applied preplant or early sidedress; N post-sensing "+" applied from V15 to R1 stages (SPAD meter, UAN high-clearance). ² Sum of pre-N and post-sensing N rate.

³ Yields statistically different when followed by different letter ($P \le 0.10$). Thirty producer sites (field-length strips) with corn following soybean. Hawkins, Lundvall, Sawyer (2006).

Nitrogen Product and Timing

	Rank	Avgerage
Treatment: all 150 lb N/acre	1 to 15	bu/acre
All N applied at planting:		
UAN injected mid-row	4	220 abc
UAN dribbled mid-row	13	215 def
Urea/Agrotain broadcast	1	223 a
SuperU broadcast	2	223 ab
ESN broadcast	8	219 abcde
UAN/Agrotain broadcast	15	213 f
NH ₃ injected mid-row	12	216 cdef
NH ₃ /N-Serve injected mid-row	11	216 cdef
Split N application (1st at planting):		
UAN 50 broadcast+UAN 100 injected V5	9	218 bcde
UAN 100 inj+UAN 50 injected V5	5	220 abc
UAN 100 inj+Urea/AT 50 broadcast V5	7	219 abcd
UAN 100 inj+UAN 50 dribbled in-row V9	3	221 abc
UAN 100 inj+Urea/AT 50 broadcast V9	10	218 cde
All N sidedressed:		
UAN injected mid-row at V5	6	220 abc
UAN dribbled mid-row at V9	14	214 ef

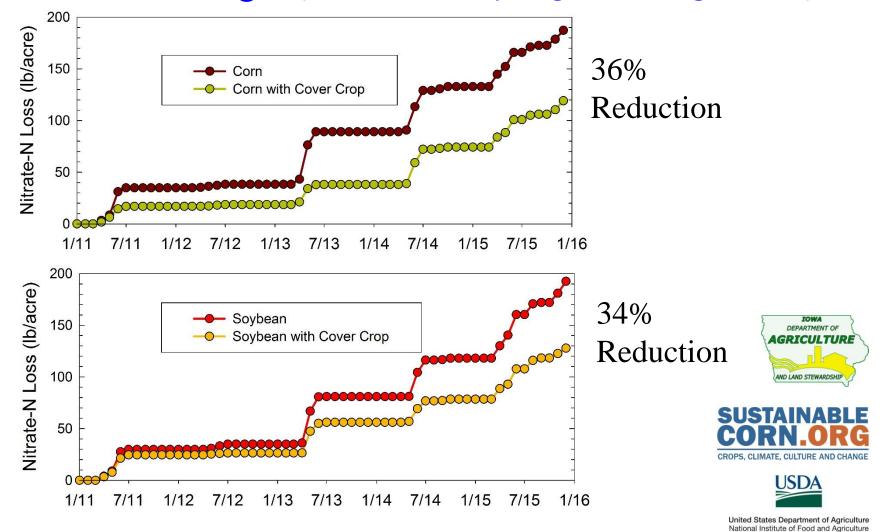
IOWA STATE UNIVERSITY University Extension

Dr. Emerson Nafziger, Univ. of Illinois, 2014-2016, 10 site-years

Nitrogen Product and Timing

Data from 2015 (3 sites) and 2016(4)		Rank (1 to 19)		Yield p=0.1	
All N applied at planting:	<u>2015</u>	<u>2016</u>	<u>2-yr</u>	<u>bu/acre</u>	
UAN injected mid-row	7	7	7	221 ab	
UAN dribbled mid-row	19	13	17	214 ef	
Urea/Agrotain broadcast	9	1	2	223 ab	
SuperU broadcast	1	2	1	225 a	
ESN broadcast	12	3	5	222 ab	
UAN/Agrotain broadcast	17	18	19	213 f	
NH ₃ injected mid-row	18	11	15	215 cdef	
NH ₃ /N-Serve injected mid-row	16	15	16	215 def	
UAN/Instinct II injected mid-row	13	16	14	217 bcdef	
Split N application (1st at planting):					
UAN 50 broadcast+UAN 100 inj V5	15	9	13	218 bcdef	
UAN 100 inj+UAN 50 injected V5	4	14	10	220 abcde	
UAN 100 inj+Urea/AT 50 broadcast V5	5	10	8	221 abc	
UAN 100 inj+UAN 50 dribbled in-row V9	8	5	4	222 ab	
UAN 100 inj+Urea/AT 50 broadcast V9	11	8	11	220 abcde	
UAN 100 inj+UAN 50 dribble in-row V5	2	6	3	223 ab	
UAN 100 inj+UAN 50 dribble mid-row VT	14	4	9	221 abcd	
UAN 100 inj+UAN 50 dribble in-row VT	3	12	6	222 ab	
All N sidedressed:					
UAN injected mid-row V5	6	17	12	218 bcdef	
UAN dribbled mid-row V9	10	19	18	213 f	

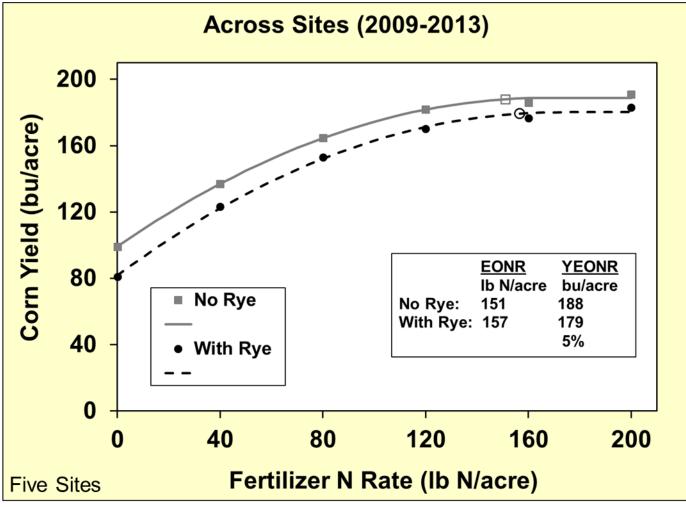
I


Dr. Emerson Nafziger, Univ. of Illinois, 2014-2016

Cereal Rye Cover Crop

Rye as a cover crop and in-field management practice has the largest impact on reducing nitrate-N loss

- However, rye cover crops have a neutral to negative effect on corn yield whereas other in-field practices have a positive effect on corn yield
- Rye does not affect soybean yield
- Rye does not affect needed N rate

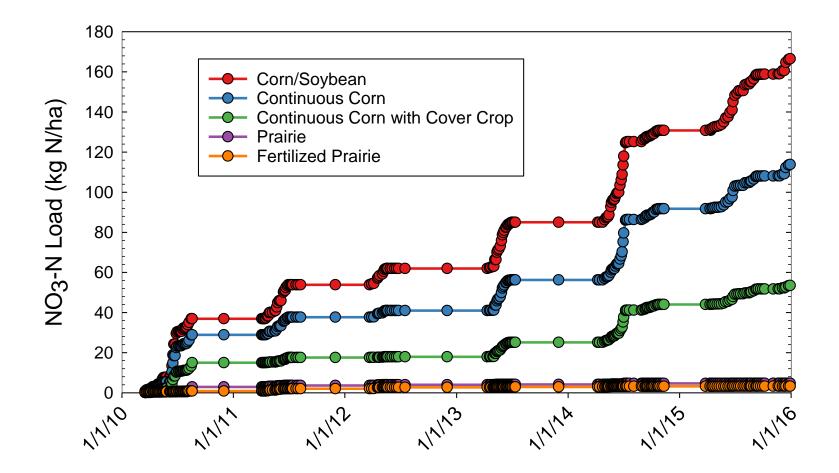

Impact of Rye Cover Crop on Nitrate-N Load in Tile Drainage (Gilmore City Ag Drainage Site)

IOWA STATE UNIVERSITY Extension and Outreach

M.J. Helmers, Ag. & Biosystems Eng.

Nitrogen Rate with Rye Cover Crop

IOWA STATE UNIVERSITY


Extension and Outreach

Pantoja et al., Iowa State Univ.

Land Use

- Land use changes have great potential for reducing nitrate-N loss to water systems and by themselves can meet the reduction goal
- However, land use decisions are complex and can dramatically change cropping systems as they involve use of perennial crop systems; and they need to be profitable

Impact of Land Use Change on Nitrate-N Load in Tile Drainage (Gilmore City Ag Drainage Site)

IOWA STATE UNIVERSITY Extension and Outreach

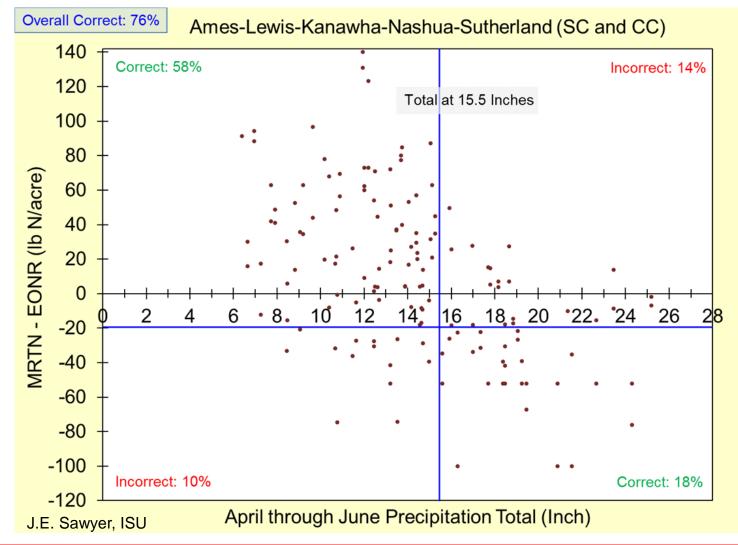
M.J. Helmers, Ag. & Biosystems Eng.

Example of What It Might Take to Reach the Nitrogen Reduction Goal

Example: Combination Scenarios that Achieves N Goal From Non-Point Sources for Iowa Nutrient Reduction Strategy – *for illustration only*.

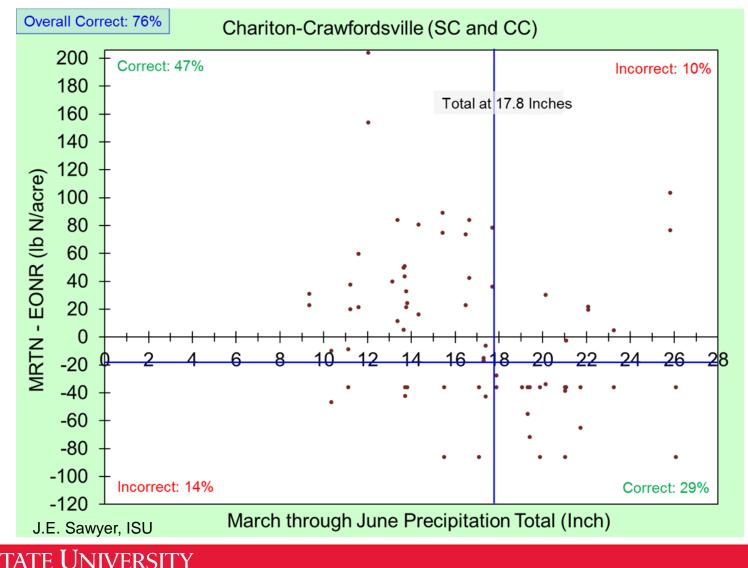
Practice/Scenario	Nitrate-N Reduction % (from baseline)	Total Equal Annualized Cost Million \$/yr
N management - Maximum Return to Nitrogen Application Rate and 60% of all Corn-Bean and Continuous Corn Acres with Cover Crop Edge-of-Field - 27% of all ag land treated with wetland and 60% of all subsurface drained land with bioreactor	42	756

In Iowa: ~7,600 wetlands and ~120,000 bioreactors

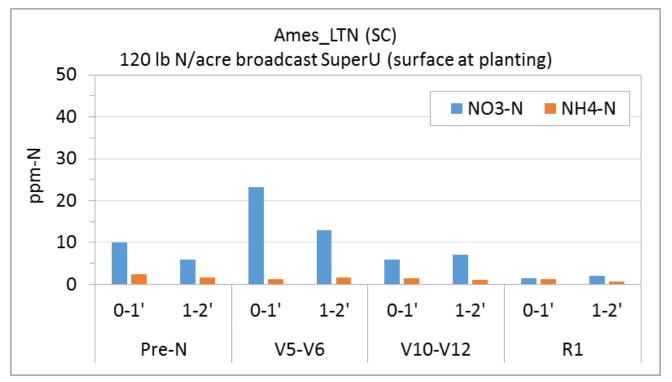

IOWA STATE UNIVERSITY Extension and Outreach

M.J. Helmers, Ag. & Biosystems Eng.

Springtime Nitrogen Loss?


How is the weather impacting N loss potential this year?

Wet Spring – Need More Nitrogen? Main Iowa Region


IOWA STATE UNIVERSITY Extension and Outreach

Wet Spring – Need More Nitrogen? SE Iowa Region

Extension and Outreach

Is Normal for Soil Nitrate to Decrease Over Time with Corn N Uptake

Soybean-Corn EONR: 112 lb N/acre Pre-N sample: 5/13 N app: 5/18 V5-V6: 6/18 V10-V12: 7/1 R1: 7/23

Sawyer and Barker, 2015

Questions?

IOWA STATE UNIVERSITY Extension and Outreach