Nitrogen Diagnostic Tools in Corn Production

John E. Sawyer
Professor
Soil Fertility Extension Specialist
Department of Agronomy
Evaluating Plant-Available N

❖ Soil N mineralization / Soil supply
 ➢ Indirect procedures (crop rotation)
 ➢ Plant vegetation
 • Yield, N uptake, tissue N, plant sensing
 ➢ Laboratory microbial incubation
 ➢ Total soil N analysis
 ➢ Chemical extraction
 • Water, strong acids or bases, neutral salts
 – Analyze for C, N, distillable NH$_3$, UV adsorption
 ➢ Soil inorganic NO$_3$-N (PPNT/PSNT)
Sidedress Soil Nitrate Test
In-Season Test

- Presidedress Nitrate Test (PSNT)
 - Late Spring Nitrate Test (LSNT)
 - Take a 0- to 12-inch soil sample when corn is 6 to 12 inches tall
 - Analyze for nitrate-N
 - Determine sidedress N rate

J.E. Sawyer, ISU Agronomy Extension
Sidedress Soil Nitrate Test

 Measures

- Residual soil nitrate
- Spring mineralized nitrate
 - Soil organic matter or manure organic N
- Applied nitrate or nitrified ammonium (LSNT)
- Nitrate present (top foot) at sampling
- Not ammonium-N

 Sampling banded N difficult (LSNT)

 Best at indicating excess N situations
ISU Soil Test-Based N Recommendations For CC and SC

- Set soil nitrate-N critical value
 - 25 ppm NO$_3$-N
- If rainfall > 20% above normal between April 1 and sampling time
 - 3 to 5 ppm lower
- (Critical level minus soil test) x 8 = lb N/acre needed
Samples From Corn Zero-N Plots

Relative Yield of No-N Control (Relative to AONR)

B = 7.2%

A = 2.2%

n = 138

Sawyer and Barker, 1999-2015

J.E. Sawyer, ISU Agronomy Extension
Samples From Corn Zero-N Plots

Mean 10.7 lb N/acre per LSNT ppm increase

Sawyer and Barker, 1999-2015
Corn Yield Increase to Fertilizer N and Liquid Swine Manure Rate
2000 - 2003

Rakshit et al.
Poultry Manure - 18 Field Trial Sites

Soil Nitrate-N (ppm)
Corn Yield Increase (bu/acre)

- No Manure
- Low Manure Rate
- High Manure Rate

Ruiz-Diaz et al.
Corn Stalk Nitrate Test
End-Of-Season Test

- Weather conditions can impact stalk nitrate concentration
 - Drought – result in high concentration
 - Poor ear development (small N sink)
 - High rainfall (N losses) – result in low concentration
- Insect/disease damage
- Stalk nitrate concentrations will vary from low to high between years in relation to late-season corn N use, corn productivity, optimal need, and soil N supply

J.E. Sawyer, ISU Agronomy Extension
Corn Stalk Nitrate Test

- Consistently low or high? Evaluate for several years
 - Usually in low range:
 - Increase N rate
 - Usually in excess range:
 - Decrease N rate
- Best at indicating excess N situations
- Does not indicate optimal N rate
- Does not indicate how much to change N rate
Corn Stalk Nitrate Test
CROP 3154
Sample stalk: 6 to 14 inch segment above ground
1 to 3 weeks after black layer
Fifteen 8-inch segments per sample
Ruiz-Diaz et al. (poultry manure)
Stalk Nitrate at Maturity vs. Applied N Rate Difference from Economic N Response

1999-2002 C-S Sites
1999-2002 C-C Sites

Sawyer and Barker, ISU
Corn Plant N Stress
In-Season Sensing
Aerial Photo
Aerial Sensed Image
 Multi-spectral reflectance
Equipment Mounted Sensor
 Active Canopy Sensors
 GreenSeeker
 Crop Circle
 OptRx
 CropSpec
Hand-Held Sensors
 Minolta 502 SPAD Meter
Phone Apps
No N applied in this part of field

N applied in this part of field

Seeing Field Variability in N Deficiency
2003 LTN Five-Site Average
C-S

Differential from Optimum N Rate (lb N/acre)

RCM Value

V8
V15
R1
R3

N Deficient
N Adequate to Excess

Sawyer and Barker, ISU

IOWA STATE UNIVERSITY
Extension and Outreach

J.E. Sawyer, ISU Agronomy Extension
Corn Nitrogen Uptake and Composition

PMR 1009; Abendroth et al., 2011
Leaf Greenness
Chlorophyll Meter

Minolta model SPAD 502

- Read 30 plants per area
 - Prior to VT: sample most recently developed leaf with color exposed
 - After VT: sample ear leaf
 - Sample ½ distance from leaf tip to collar
 - Sample ½ distance between leaf edge and midrib

- Read area of interest and well fertilized reference area

- Calculate relative sufficiency index (relative greenness)
Leaf Greenness
Chlorophyll Meter

- Does indicate N deficiency
 - Relative index < 95% (Nebraska) or <97% (Iowa) indicates N deficiency
 - Need for comparative reference area that is well fertilized

- Does not indicate excess available N
 - Maximum leaf greenness not affected by luxury N consumption

- Can indicate rate of supplemental N required
Figure 1. Relative SPAD chlorophyll meter (RCM) value versus N rate difference from economic optimum rate, R1 corn growth stage.

RCM = 0.97 + 0.000614*ND - 0.000004897*ND^2

RCM = 0.99 for ND > 63 \(R^2 = 0.73^{***} \)

Data From 1999-2005
Active Sensor Wavelengths

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Visible, nm</th>
<th>NIR, nm</th>
<th>Other, nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minolta SPAD Meter</td>
<td>650 (red)</td>
<td>940</td>
<td></td>
</tr>
<tr>
<td>GreenSeeker 506</td>
<td>560 (green)</td>
<td>774</td>
<td></td>
</tr>
<tr>
<td>GreenSeeker 505</td>
<td>656 (red)</td>
<td>774</td>
<td></td>
</tr>
<tr>
<td>Crop Circle ACS-210</td>
<td>590 (amber)</td>
<td>880</td>
<td></td>
</tr>
<tr>
<td>RapidScan CS-45</td>
<td>670 (red)</td>
<td>780</td>
<td>730 (red edge)</td>
</tr>
<tr>
<td>Crop Circle ACS-470</td>
<td>various</td>
<td>various</td>
<td>various</td>
</tr>
<tr>
<td>CropSpec</td>
<td>800-810</td>
<td></td>
<td>730-740 (red edge)</td>
</tr>
</tbody>
</table>
Sensor Index Calculations

❖ Most common active canopy sensor indices
 ► Normalized Difference Vegetative Index (NDVI)
 • \((\text{NIR} - \text{VIS}) \div (\text{NIR} + \text{VIS})\)
 ► Chlorophyll index (CHL)
 • \((\text{NIR} \div \text{VIS}) - 1\)

❖ Relative values
 ► Sensor reading normalized to highest N rate
Why Use Relative Index Values?

- Various canopy characteristics influence sensor readings and index values
 - Leaf chlorophyll
 - Whole plant biomass
 - Canopy temperature
 - Canopy moisture content
 - Hybrid
 - Plant density (population)
 - Other nutrient deficiencies
Reference Corn?

What’s this?

What’s this?
Why Use Relative Index Values?

Barker and Sawyer, ISU
Active Sensor Calibration at Mid-Vegetative

Barker and Sawyer, ISU

J.E. Sawyer, ISU Agronomy Extension
Within 30 lb N/acre of EONR?
Corn Plant and Canopy Sensing

- Uses corn plant as indicator of N adequacy or deficiency
- Corn plant able to integrate across time
- Provides instantaneous feedback
- With active canopy sensors
 - Electronic integration of sensing and N rate application on-the-go
 - Requires recommended operation
 - Sub-field/continuous N rate adjustment
Corn Plant and Canopy Sensing

Considerations

- Sensors cannot detect excess N
- Corn must be N deficient to express N stress
- Detecting small N deficiency difficult
- Must have an “adequate or N-Rich” in-field references (create relative N stress value)
 - Sensors “see” any plant stresses
Spring Precipitation as a Tool for Decisions About Additional Nitrogen Application (Main Iowa)

Overall Correct: 76%

Ames-Lewis-Kanawha-Nashua-Sutherland (SC and CC)

Correct: 58%

Incorrect: 14%

Total at 15.5 Inches

Incorrect: 10%

Correct: 18%

April through June Precipitation Total (Inch)
Spring Precipitation as Tool for Decisions About Additional Nitrogen Application (Southeast Iowa)

Overall Correct: 76%

Correct: 47%
Incorrect: 10%
Total at 17.8 Inches
Correct: 29%
Incorrect: 14%
Questions?