Nitrogen Diagnostic Tools in Corn Production

John E. Sawyer
Professor
Soil Fertility Extension Specialist
Department of Agronomy
Evaluating Plant-Available N

- Soil N mineralization / Soil supply
 - Indirect procedures (crop rotation)
 - Plant vegetation
 - Yield, N uptake, tissue N, plant sensing
 - Laboratory microbial incubation
 - Total soil N analysis
 - Chemical extraction
 - Water, strong acids or bases, neutral salts
 - Analyze for C, N, distillable \(\text{NH}_3 \), UV adsorption
- Soil inorganic \(\text{NO}_3^- \)-N (PPNT/PSNT)
Sidedress Soil Nitrate Test
In-Season Test

- Presidedress Nitrate Test (PSNT)
- Late Spring Nitrate Test (LSNT)
 - Take a 0- to 12-inch soil sample when corn is 6 to 12 inches tall
 - Analyze for nitrate-N
 - Determine sidedress N rate
Sidedress Soil Nitrate Test

- Measures
 - Residual soil nitrate
 - Spring mineralized nitrate
 - Soil organic matter or manure organic N
 - Applied nitrate or nitrified ammonium (LSNT)
 - Nitrate present (top foot) at sampling
 - Not ammonium-N

- Sampling banded N difficult (LSNT)
- Best at indicating excess N situations
ISU Soil Test-Based N Recommendations For CC and SC

- Set soil nitrate-N critical value
 - 25 ppm NO$_3$-N

- If rainfall > 20% above normal between April 1 and sampling time
 - 3 to 5 ppm lower

- (Critical level minus soil test) \(\times 8 = \) lb N/acre needed

J.E. Sawyer, ISU Agronomy Extension
Samples From Corn Zero-N Plots

Relative Yield of No-N Control (Relative to AONR)

B = 7.2%

A = 2.2%

Sawyer and Barker, 1999-2015

CC
SC

n = 138
Samples From Corn Zero-N Plots

Mean 10.7 lb N/acre per LSNT ppm increase

Sawyer and Barker, 1999-2015
Poultry Manure - 18 Field Trial Sites

-20
0
20
40
60
80
100
0 10 20 30 40 50 60
Soil Nitrate-N (ppm)
Corn Yield Increase (bu/acre)
No Manure
Low Manure Rate
High Manure Rate

Ruiz-Diaz et al.
Corn Stalk Nitrate Test
End-Of-Season Test

- Weather conditions can impact stalk nitrate concentration
 - Drought – result in high concentration
 - Poor ear development (small N sink)
 - High rainfall (N losses) – result in low concentration

- Insect/disease damage

- Stalk nitrate concentrations will vary from low to high between years in relation to late-season corn N use, corn productivity, optimal need, and soil N supply
Corn Stalk Nitrate Test

- Consistently low or high? Evaluate for several years
 - Usually in low range: Increase N rate
 - Usually in excess range: Decrease N rate

- Best at indicating excess N situations
- Does not indicate optimal N rate
- Does not indicate how much to change N rate
Corn Stalk Nitrate Test
CROP 3154

Sample stalk: 6 to 14 inch segment above ground
1 to 3 weeks after black layer
Fifteen 8-inch segments per sample
Corn Yield Increase to Fertilizer N and Liquid Swine Manure Rate
SC and CC, 2000 - 2003

Woli et al.

J.E. Sawyer, ISU Agronomy Extension
Ruiz-Diaz et al. (poultry manure)
Stalk Nitrate at Maturity vs. Applied N Rate Difference from Economic N Response

Sawyer and Barker, ISU
Corn Plant N Stress In-Season Sensing
Aerial Photo
Aerial Sensed Image
Multi-spectral reflectance
Equipment Mounted Sensor
Active Canopy Sensors
 GreenSeeker
 OptRx
 CropSpec
Hand-Held Sensors
 Minolta 502 SPAD Meter
 Phone Apps
Seeing Field Variability in N Deficiency

No N applied in this part of field

N applied in this part of field
2003 LTN Five-Site Average
C-S

Differential from Optimum N Rate (lb N/acre)

N Deficient
N Adequate to Excess

J.E. Sawyer, ISU Agronomy Extension
Corn Nitrogen Uptake and Composition

PMR 1009; Abendroth et al., 2011
Minolta model SPAD 502

- Read 30 plants per area
 - Prior to VT: sample most recently developed leaf with color exposed
 - After VT: sample ear leaf
 - Sample ½ distance from leaf tip to collar
 - Sample ½ distance between leaf edge and midrib

- Read area of interest and well fertilized reference area
- Calculate relative sufficiency index (relative greenness)
Leaf Greenness Chlorophyll Meter

❖ Does indicate N deficiency
 ➢ Relative index < 95% (Nebraska) or <97% (Iowa) indicates N deficiency
 • Need for comparative reference area that is well fertilized

❖ Does not indicate excess available N
 ➢ Maximum leaf greenness not affected by luxury N consumption

❖ Can indicate rate of supplemental N required
Figure 1. Relative SPAD chlorophyll meter (RCM) value versus N rate difference from economic optimum rate, R1 corn growth stage.

\[RCM = 0.97 + 0.000614 \times ND - 0.000004897 \times ND^2 \]

RCM = 0.99 for ND > 63 \[R^2 = 0.73^{***} \]
Active Sensor Wavelengths

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Visible, nm</th>
<th>NIR, nm</th>
<th>Other, nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minolta SPAD Meter</td>
<td>650 (red)</td>
<td>940</td>
<td></td>
</tr>
<tr>
<td>GreenSeeker 506</td>
<td>560 (green)</td>
<td>774</td>
<td></td>
</tr>
<tr>
<td>GreenSeeker 505</td>
<td>656 (red)</td>
<td>774</td>
<td></td>
</tr>
<tr>
<td>Crop Circle ACS-210</td>
<td>590 (amber)</td>
<td>880</td>
<td></td>
</tr>
<tr>
<td>RapidScan CS-45</td>
<td>670 (red)</td>
<td>780</td>
<td>730 (red edge)</td>
</tr>
<tr>
<td>Crop Circle ACS-470</td>
<td>various</td>
<td>various</td>
<td>various</td>
</tr>
<tr>
<td>CropSpec</td>
<td>800-810</td>
<td>730-740 (red edge)</td>
<td>730-740 (red edge)</td>
</tr>
</tbody>
</table>
Sensor Index Calculations

❖ Most common active canopy sensor indices
 ➢ Normalized Difference Vegetative Index (NDVI)
 • \((\text{NIR} - \text{VIS}) \div (\text{NIR} + \text{VIS})\)
 ➢ Chlorophyll index (CHL)
 • \((\text{NIR} \div \text{VIS}) - 1\)

❖ Relative values
 ➢ Sensor reading normalized to highest N rate
Why Use Relative Index Values?

- Various canopy characteristics influence sensor readings and index values
 - Leaf chlorophyll
 - Whole plant biomass
 - Canopy temperature
 - Canopy moisture content
 - Hybrid
 - Plant density (population)
 - Other nutrient deficiencies

J.E. Sawyer, ISU Agronomy Extension
Reference Corn?

What’s this?

What’s this?
Why Use Relative Index Values?

Barker and Sawyer, ISU
Active Sensor Calibration at Mid-Vegetative

J.E. Sawyer, ISU Agronomy Extension

Barker and Sawyer, ISU
Within 30 lb N/acre of EONR?
Corn Plant and Canopy Sensing

- Uses corn plant as indicator of N adequacy or deficiency
- Corn plant able to integrate across time
- Provides instantaneous feedback
- With active canopy sensors
 - Electronic integration of sensing and N rate application on-the-go
 • Requires recommended operation
 - Sub-field/continuous N rate adjustment
Corn Plant and Canopy Sensing

Considerations

- Sensors cannot detect excess N
- Corn must be N deficient to express N stress
- Detecting small N deficiency difficult
- Must have an “adequate or N-Rich” in-field references (create relative N stress value)
 - Sensors “see” any plant stresses

J.E. Sawyer, ISU Agronomy Extension
Spring Precipitation as a Tool for Decisions About Additional Nitrogen Application (Main Iowa)

Ames-Lewis-Kanawha-Nashua-Sutherland (SC and CC)

Overall Correct: 76%
Correct: 58%
Incorrect: 14%
Total at 15.5 Inches
Correct: 18%

J.E. Sawyer, ISU Agronomy Extension
Spring Precipitation as Tool for Decisions About Additional Nitrogen Application (Southeast Iowa)

J.E. Sawyer, ISU Agronomy Extension
Questions?

This institution is an equal opportunity provider. For the full non-discrimination statement or accommodation inquiries, go to www.extension.iastate.edu/diversity/ext.