Nitrogen Diagnostic Tools in Corn Production

John E. Sawyer Professor Soil Fertility Extension Specialist Department of Agronomy

Evaluating Plant-Available N

- Soil N mineralization / Soil supply
 - Indirect procedures (crop rotation)
 - Plant vegetation
 - Yield, N uptake, tissue N, plant sensing
 - Laboratory microbial incubation
 - Fotal soil N analysis
 - Chemical extraction
 - Water, strong acids or bases, neutral salts
 - Analyze for C, N, distillable NH₃, UV adsorption
 - Soil inorganic NO₃-N (PPNT/PSNT)

Sidedress Soil Nitrate Test In-Season Test

- Presidedress Nitrate Test (PSNT) Late Spring Nitrate Test (LSNT)
 - Take a 0- to 12-inch soil sample when corn is 6 to 12 inches tall
 - Analyze for nitrate-N
 - Determine sidedress N rate

Sidedress Soil Nitrate Test

Measures

- Residual soil nitrate
- Spring mineralized nitrate
 - Soil organic matter or manure organic N
- > Applied nitrate or nitrified ammonium (LSNT)
- Nitrate present (top foot) at sampling
- > Not ammonium-N
- Sampling banded N difficult (LSNT)
- Best at indicating excess N situations

ISU Soil Test-Based N Recommendations For CC and SC

- Set soil nitrate-N critical value
 - ≥ 25 ppm NO₃-N
- If rainfall > 20% above normal between April
 1 and sampling time
 - > 3 to 5 ppm lower
- (Critical level minus soil test) x 8 = lb N/acre needed

Samples From Corn Zero-N Plots

Sawyer and Barker, 1999-2015

IOWA STATE UNIVERSITY Extension and Outreach

Samples From Corn Zero-N Plots

Mean 10.7 lb N/acre per LSNT ppm increase

Sawyer and Barker, 1999-2015

IOWA STATE UNIVERSITY Extension and Outreach

IOWA STATE UNIVERSITY Extension and Outreach

Corn Stalk Nitrate Test End-Of-Season Test

Weather conditions can impact stalk nitrate concentration

- Drought result in high concentration
 - Poor ear development (small N sink)
- High rainfall (N losses) result in low concentration
- Insect/disease damage
- Stalk nitrate concentrations will vary from low to high between years in relation to lateseason corn N use, corn productivity, optimal need, and soil N supply

Corn Stalk Nitrate Test

Consistently low or high? Evaluate for several years

- Usually in low range:
 - Increase N rate
- > Usually in excess range:
 - Decrease N rate
- Best at indicating excess N situations
- Does not indicate optimal N rate
- Does not indicate how much to change N rate

Corn Stalk Nitrate TestSample stalk: 6 to 14 inch segment above groundCROP 31541 to 3 weeks after black layerFifteen 8-inch segments per sample

IOWA STATE UNIVERSITY Extension and Outreach

Ruiz-Diaz et al. (poultry manure)

IOWA STATE UNIVERSITY Extension and Outreach

Stalk Nitrate at Maturity vs. Applied N Rate Difference from Economic N Response

IOWA STATE UNIVERSITY Extension and Outreach

Corn Plant N Stress In-Season Sensing Aerial Photo Aerial Sensed Image Multi-spectral reflectance Equipment Mounted Sensor Active Canopy Sensors GreenSeeker **Crop Circle OptRx** CropSpec **Hand-Held Sensors** Minolta 502 SPAD Meter **Phone Apps**

IOWA STATE UNIVERSITY Extension and Outreach

Corn Nitrogen Uptake and Composition

IOWA STATE UNIVERSITY

Extension and Outreach

PMR 1009; Abendroth et al., 2011

Leaf Greenness Chlorophyll Meter

Minolta model SPAD 502

- > Read 30 plants per area
 - Prior to VT: sample most recently developed leaf with color exposed
 - After VT: sample ear leaf
 - Sample ¹/₂ distance from leaf tip to collar
 - Sample ½ distance between leaf edge and midrib
- Read area of interest and well fertilized reference area
- Calculate relative sufficiency index (relative greenness)

Leaf Greenness Chlorophyll Meter

Does indicate N deficiency

- Relative index < 95% (Nebraska) or <97% (Iowa) indicates N deficiency
 - Need for comparative reference area that is well fertilized
- Does not indicate excess available N
 - Maximum leaf greenness not affected by luxury N consumption

Can indicate rate of supplemental N required

ISU Publication PM-2026

IOWA STATE UNIVERSITY Extension and Outreach

Active Sensor Wavelengths

Sensor	Visible, nm	NIR, nm	Other, nm
Minolta SPAD Meter	650 (red)	940	
GreenSeeker 506	560 (green)	774	
GreenSeeker 505	656 (red)	774	
Crop Circle ACS-210	590 (amber)	880	
RapidScan CS-45	670 (red)	780	730 (red edge)
Crop Circle ACS-470	various	various	various
CropSpec		800-810	730-740 (red edge)

Sensor Index Calculations

Most common active canopy sensor indices

- Normalized Difference Vegetative Index (NDVI)
 - $(NIR VIS) \div (NIR + VIS)$
- Chlorophyll index (CHL)
 - (NIR ÷ VIS) − 1
- Relative values
 - Sensor reading normalized to highest N rate

Why Use Relative Index Values?

- Various canopy characteristics influence sensor readings and index values
 - Leaf chlorophyll
 - Whole plant biomass
 - Canopy temperature
 - Canopy moisture content
 - > Hybrid
 - Plant density (population)
 - Other nutrient deficiencies

Reference Corn?

Why Use Relative Index Values?

Barker and Sawyer, ISU

IOWA STATE UNIVERSITY Extension and Outreach

Active Sensor Calibration at Mid-Vegetative

Within 30 lb N/acre of EONR?

G.M Bean et al., Univ. Missouri

Corn Plant and Canopy Sensing

- Uses corn plant as indicator of N adequacy or deficiency
- Corn plant able to integrate across time
- Provides instantaneous feedback
- With active canopy sensors
 - Electronic integration of sensing and N rate application on-the-go
 - Requires recommended operation
 - Sub-field/continuous N rate adjustment

Corn Plant and Canopy Sensing

Considerations

- Sensors cannot detect excess N
- Corn must be N deficient to express N stress
- Detecting small N deficiency difficult
- Must have an "adequate or N-Rich" in-field references (create relative N stress value)
 - Sensors "see" any plant stresses

Spring Precipitation as a Tool for Decisions About Additional Nitrogen Application (Main Iowa)

IOWA STATE UNIVERSITY Extension and Outreach

Spring Precipitation as Tool for Decisions About Additional Nitrogen Application (Southeast Iowa)

IOWA STATE UNIVERSITY Extension and Outreach

Questions?

This institution is an equal opportunity provider. For the full non-discrimination statement or accommodation inquiries, go to www.extension.iastate.edu/diversity/ext.