Increasing Importance of Sulfur for Field Crops

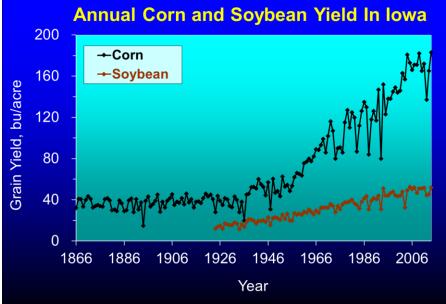
John Sawyer, Professor Brian Lang, Extension Field Agronomist Daniel Barker, Assistant Scientist Iowa State University

IOWA STATE UNIVERSITY University Extension

Sulfur Research History

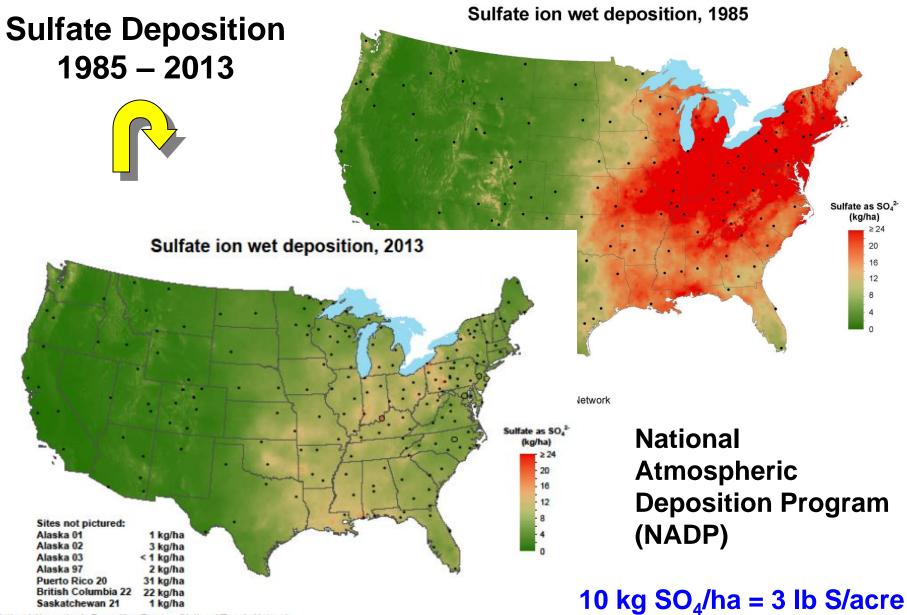
- 40+ years (before 2005) of research across lowa (approximately 200 site-years)
 - Three times statistically significant yield increase
 - One study with multi-year average yield decrease
- My first research project was on sulfur
 - Illinois 1977-1979 statewide with corn
 - Sulfur response at 5 of 81 site-years
 - 11 bu/acre mean increase at the 5 sites
 - Response with surface soils in greenhouse
 - One soil first plant harvest
 - 60% of soils second harvest

Sulfur Research History


- Southern IL wheat (1990-1992)
 - No yield response 2 research farms
- Recent University of Illinois research
 - Fernandez and Sutradhar, 2009-2011
 - > 0 of 18 site-years small plot trial corn yield response
 - Mean of 9 sites: 11 bu/acre response
 - 2 of 22 site-years field strip trial corn yield response

Crop Sulfur Uptake

Corn at 200 bu/acre (Iowa trials)
 8 lb S/acre grain (0.04 lb S/bu)
 5 lb S/acre vegetation (1.0 lb S/ton d.m.)
 Alfalfa (Iowa trials)
 5-6 lb S/ton d.m.


- Modern Corn and Soybean
 - Corn 0.07 lb S/bu
 - Soybean 0.10 lb S/bu
 - Alfalfa 5 lb S/ton

Sulfur Sources

Where does crop-available sulfur come from?

- Soil organic matter
 - Large pool of sulfur in most soils
- Subsoil sulfate
- Rock degradation/accumulated gypsum
- Atmospheric deposition
 - Volcanic emission
 - Marine gases
 - Coal/diesel burning
- Manure
- Fertilizers/byproducts containing sulfur
- Irrigation water

National Atmospheric Deposition Program/National Trends Network http://nadp.isws.illinois.edu

IOWA STATE UNIVERSITY

University Extension

Total S Deposition - National Atmospheric Deposition Program

University Extension

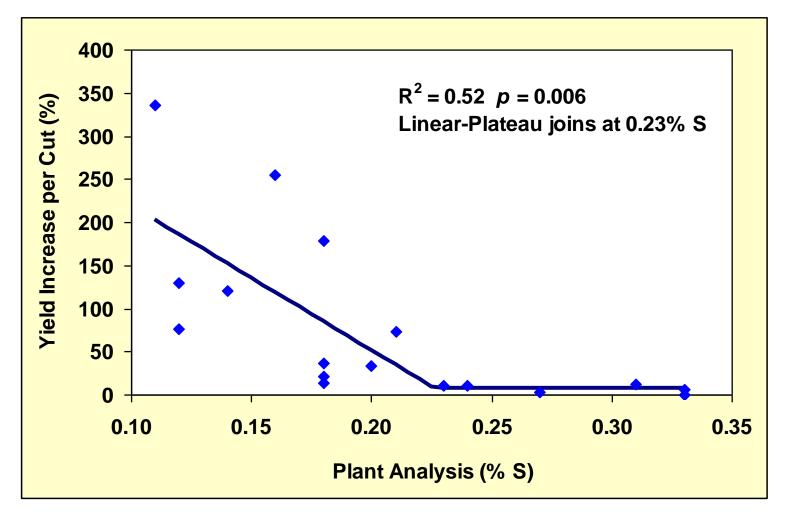
Things Changed in Iowa Observation of poor alfalfa growth in Northeast Iowa

IOWA STATE UNIVERSITY University Extension

Visual Response in Alfalfa to S Application

IOWA STATE UNIVERSITY University Extension

Alfalfa Response to S Application in Field Areas with Poor and Good Coloration of Alfalfa, 2005-2006


		20	20	2006			
	Cuts	2+3	Cut	Cut 2		it 1	
Sulfur	DM Y	ield	ield Plant Top S		DM	DM Yield	
		0	bserved	Growth A	rea		
Treatment	Poor	Good	Poor	Good	Poor	Good	
	ton/	acre	%	S	ton/	acre	
None	1.18a	2.99b	0.14a	0.22b	1.10a	2.04b	
Am. sulfate	2.76b	3.26b	0.40d	0.35c	2.18b	2.22b	
Ca. sulfate	2.49b	3.21b	0.41d	0.37c	2.14b	2.19b	
	6.6	7.4 S	oil Sulfa	te-S (ppm)			

Three field sites in 2005, Elgin, Gunder and West Union, IA (Fayette & Downs sil soils). Two field sites in 2006, Elgin and Gunder, IA.

Sulfur materials were applied at 40 lb S/acre after first cut in in 2005.

Treatment means followed by the same letter are not significantly different ($p \le 0.10$).

Alfalfa Yield Increase to Applied S vs. Plant S Concentration (six-inch plant top)

Things Changed

能和意义。

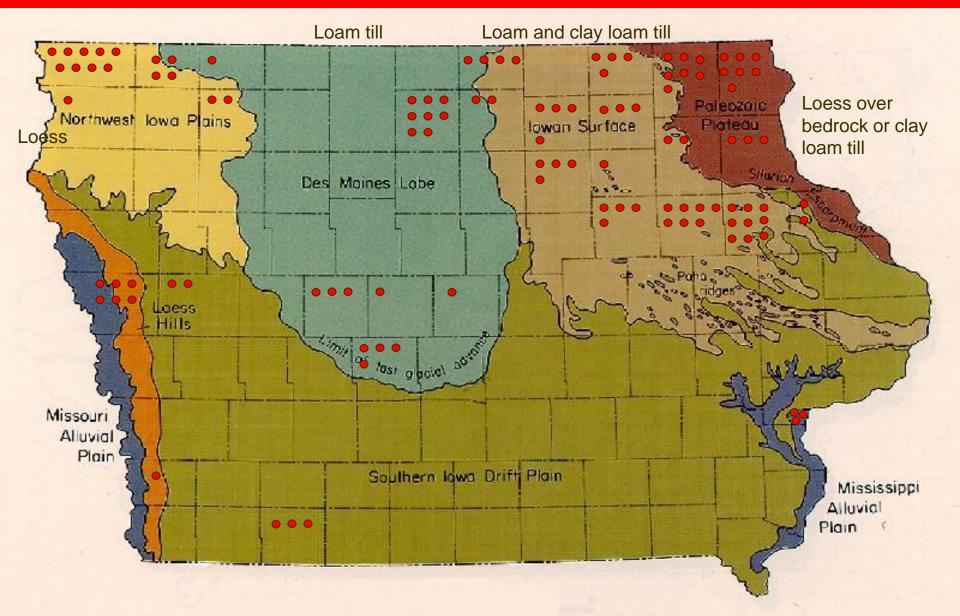
Photo from B. Lang, ISU Waukon – 6/26/2006

The second s

Visual Response in Corn to Sulfur Application

S

Check


S

Check

Photo from B. Lang, ISU Waukon – 8/2006

Check

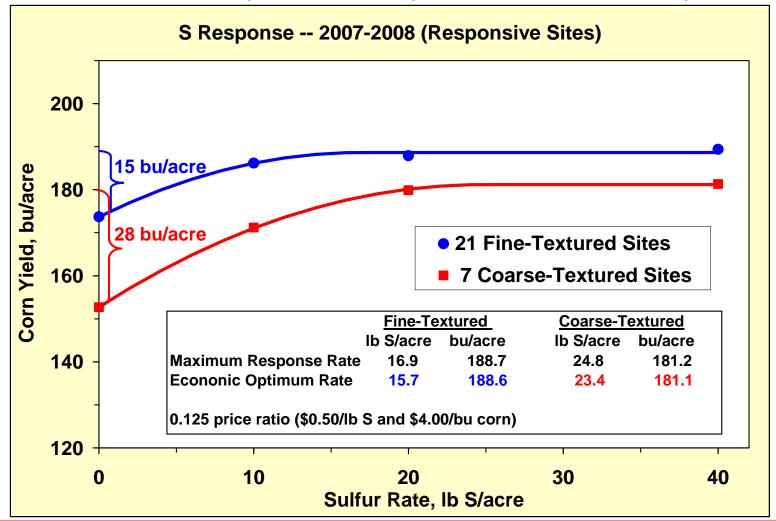
S

Corn and soybean S trial sites, 2006-2013

IOWA STATE UNIVERSITY University Extension

Sulfur Fertilizer Trials on Corn in Problem Field Areas, Northeast Iowa, 2006

Location	Soil type	Sulfur	Yield
			bu/acre
Lamont 1	Sparta Ifs	No	123 a
		Yes	151 b
Lamont 2	Sparta Ifs	No	154 a
		Yes	198 b
Thorpe 1	Chelsa lfs	Νο	88 a
		Yes	108 b
Thorpe 2	Kenyon I	Νο	196 a
		Yes	204 a
Waukon	Fayette sl	No	96 a
		Yes	172 b
Waterville	Fayette sl	No	118 a
	-	Yes	171 b


Sulfur applied as calcium sulfate at 40 lb S/acre.

Forty-Seven Corn S Rate Sites in 2007-2009 Northeast – North Central Iowa

- Sulfur (gypsum) at 0, 10, 20 and 40 lb S/acre
 2007
 - > 17 of 20 sites responded to S application
- 18 bu/acre average yield increase across all sites
 2008
 - > 11 of 25 sites responded to S application
 - 7 bu/acre average yield increase across all sites
- ***** 2009
 - > 2 sites with no response to S application
- Soils: I, sil, fsl, lfs, sl, sicl, cl

Twenty-Eight Responsive S Rate Sites 2007-2008 North Central - Northeast Iowa

Soils: 21 fine texture (cl, sicl, sil, l); 7 coarse texture (fsl, lfs, sl)

IOWA STATE UNIVERSITY University Extension

Phosphorus and Sulfur Product Evaluation

- Two sites in northeast Iowa
 - > 2006 (silt loam and loam soils)
 - Simplot 13-33-0-15S (SEF)
- Five sites in central to north-central lowa
 - 2008 2010 (four loam and one loamy fine sand soils)
 - Mosaic 13-33-0-15S (MES15)
 - Mosaic 12-40-0-10S (MES10)
- Compared to AMS and MAP
- Sulfur applied at 10 and 30 lb S/acre
 - > N and P equalized at rate with highest S rate

Phosphorus and Sulfur Product Evaluation

Sulfur response at two 2006 sites

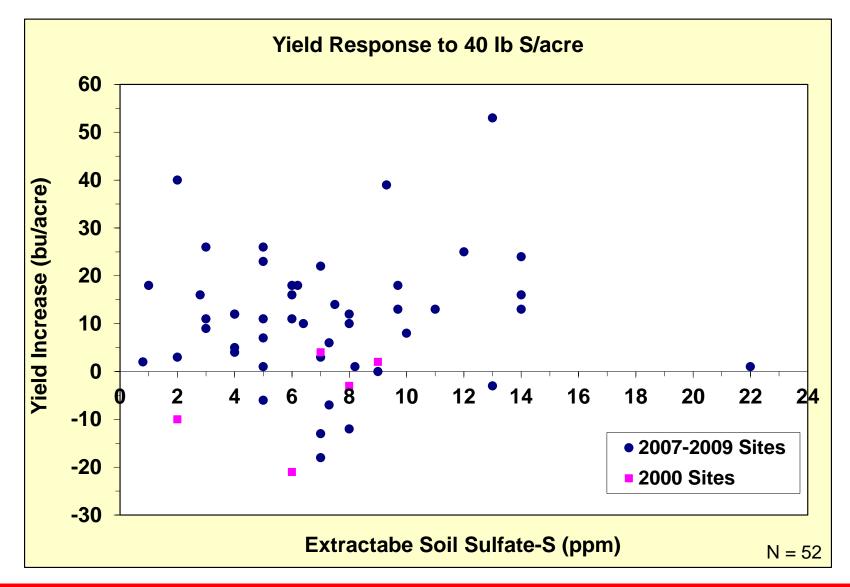
Treatment	Ear Leaf S	Grain Yield				
	%	bu/acre				
S-CON	0.15a	196a				
SEF-10	0.18b	211b				
AMS-10	0.18b	211b				
Mean response across both sites, 2006.						

- No S yield response at five 2008-2010 sites
 - Leaf S concentration increased with all products
- Across all sites (2006-2010)
 - Yield response to P with all products (17 bu/acre)
 - Leaf P concentration increase with all products

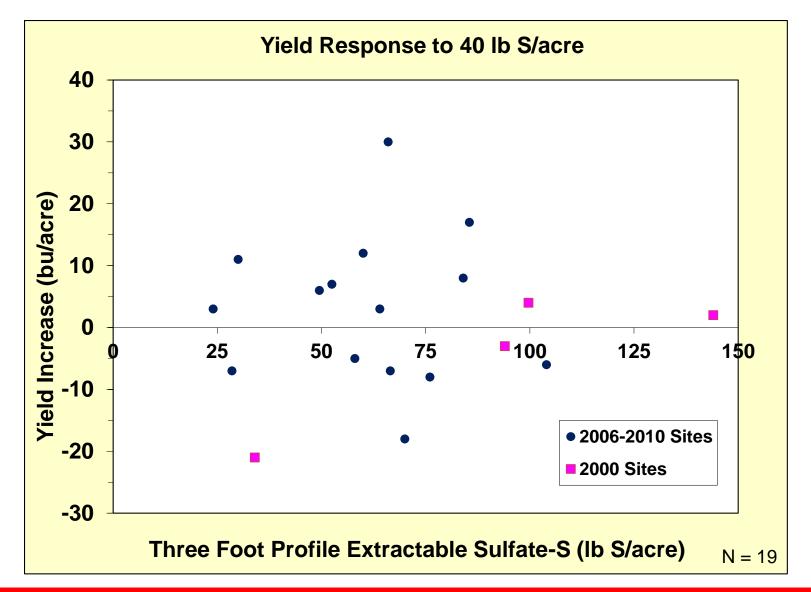
On-Farm Strip Trials Central and Northeast Iowa, 2009

		Previous	Sulfur	С	Corn Yield	
Site	County	Crop	Rate	- S	+ S	Resp.
			lb S/acre		bu/acre	
3	Greene	corn	40	225	229	
4	Greene	corn	40	210	215†	5
5	Greene	corn	40	217	228†	11
6	Dallas	soybean	40	201	200	
9	Dallas	corn	40	147	152†	5
10	Dallas	corn	40	135	134	_
1	Fayette	soybean	15	224	236†	12
2	Howard	soybean	20	186	192†	6
7	Dubuque	soybean	30	216	229†	13
8	Floyd		20	199	203	
11	Winneshiek	soybean	30	215	212	

+ Significantly different, $P \le 0.10$.

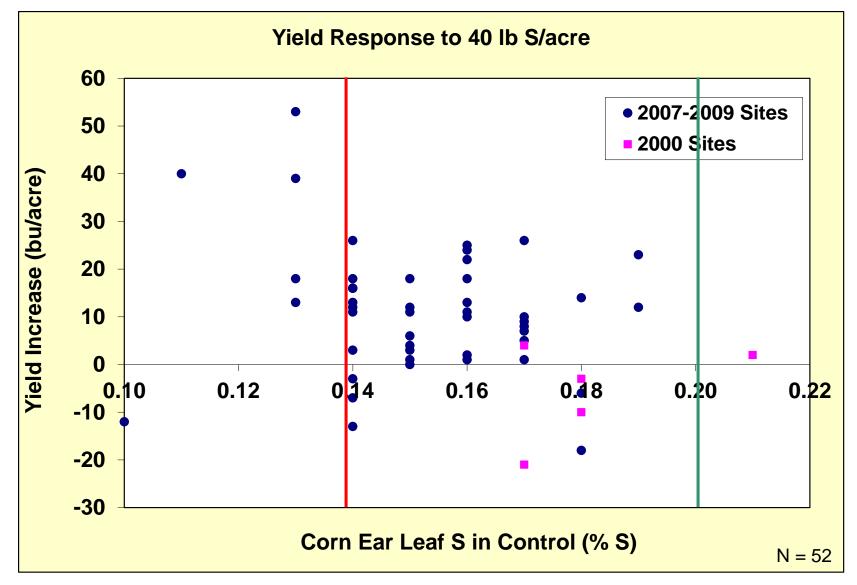

Sulfur applied as gypsum.

ISU FARM Strip Trials NW-W-SW Iowa, 2012-2013

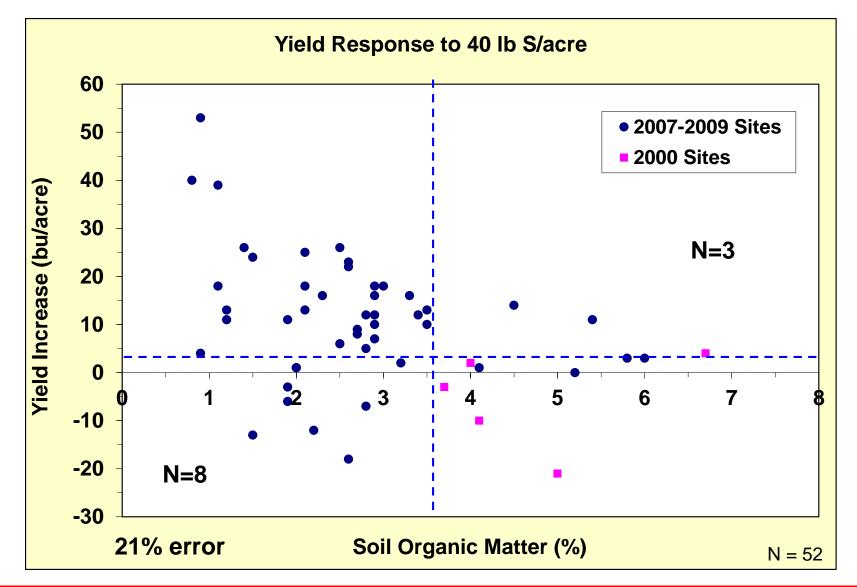

ISU	ISU FARM On-Farm Strip Trials, 2012, 2013, and 2013 Residual Year								
		Previous	Sulfur	Sulfur 2012 Yield 2013 Yield		Resp	Response		
Site	County	Crop Yr 1	Rate	- S	+ S	- S	+ S	'12	'13
			lb S/acre			bu/ac	re		
1c	Mills	soybean	17	217	218				
2c	Taylor	soybean	17	99	106*			7	
3c	Lyon	soybean	15	157	160	40.5	44.3*		3.8
4c	Osceola	soybean	15	198	197				
5c	Dickinson	soybean	15	213	214				
6c	Lyon	soybean	15	140	134*	43.7	42.7	-6	
7c	Lyon	soybean	15	88	79	55.5	53.6		
8c	Crawford	soybean	15	100	132*	45.0	49.1*	32	4.1
9c	Monona	soybean	15	190	195	228	240		
10c	Monona	soybean	15	232	228	69.3	69.5		
11c	Clay	soybean	15	231	235 *	54.8	55.2	4	
1s	Osceola	corn	15	50.2	52.4	201	205		
2s	Monona	corn	15	64.3	63.3	230	236*		6
1n	Taylor	soybean	17			172	181*		9
<u>1</u> n	Taylor	corn	17			45.3	44.1		

* Significant difference at $P \le 0.10$. Sulfur applied in spring as gypsum.

Extractable Soil Sulfate-S (0-6 inch depth)



Soil Profile Extractable Sulfate-S



IOWA STATE UNIVERSITY University Extension

Corn Ear Leaf S Concentration (R1 Stage)

Soil Organic Matter (0-6 inch depth)

42 bu/acre Response Site D 2007 Soybean Previous Crop Sparta lfs

76 bu/acre Response Site WK 2006 Alfalfa Previous Crop Fayette sil

> 20 bu/acre Response Site T1 2006 Soybean Previous Crop Chelsa lfs

IOWA STATE UNIVERSITY University Extension

Zero bu/acre Response Site Mason City 2008 Soybean Previous Crop Readlyn loam

Zero bu/acre Response Ames Site 2001 Soybean Previous Crop Clarion loam

No Response or Small Response

IOWA STATE UNIVERSITY University Extension

Early Season Sulfur Deficiency Symptoms Can Disappear

2011 Soybean-Corn 0, 5, 10, 20, 40 lb S/acre as gypsum "Higher OM" site: 5.8%; "Lower OM" site: 4.1%

	Higher OM	Lower OM
lb S/acre	bu/a	cre
0	192	187
5	184	188
10	190	187
20	191	191
40	187	183
FLSD _{0.10}	NS	NS

Dave Rueber ISU Northern Farm, Kanawha

IOWA STATE UNIVERSITY University Extension

Sulfur Rate Trials – Northern Research Farm

	Higher OM Site (5.8%)			Lower OM Site (4.1%)				
	2011	2012	20	013	2011	2012	20)13
S Rate	S <u>C</u>	SC <u>C</u>	SC	CC <u>C</u>	S <u>C</u>	SC <u>C</u>	SC	C <u>C</u>
lb S/acre		bu/acre		NDVI		bu/acre		NDVI
0	192	82	152	0.557	187	80	174	0.577
5	184	100	171	0.591	188	99	192	0.619
10	190	105	180	0.657	187	109	191	0.649
20	191	105	179	0.629	191	113	179	0.663
40	187	111	181	0.638	183	104	185	0.671
Sign. (0.10)	NS	*	*	*	NS	*	*	*

Higher OM site Webster clay loam; lower OM site Clarion loam. S rates (as gypsum) applied in spring 2011 and 2013 before corn. Significance either rate, linear, quadratic, cubic, or +S vs. –S. Dave Rueber, ISU Northern Research Farm, Kanawha, IA. NDVI from Crop Circle at V10 corn growth stage.

Sulfur Rate Trials Muscatine Island Research Farm

S Rate	2011	2012	2013				
lb S/acre	bu/acre						
0	72.4	211	259				
10	74.4	207	258				
20	69.6	214	254				
40	72.2	210	262				
Sign. (0.05)	NS	NS	NS				

Fruitfield coarse sand (1 to 1.5% OM), irrigated.

S rates (gypsum) applied post-emergence.

Leaf S concentrations increased each year with S application.

2013: 1.7 lb SO_4 -S/acre-inch irrigation (27 lb S/acre in 16 inches).

Vince Lawson, ISU Muscatine Island Research Farm, Fruitland.

Summary

Sulfur deficiencies an issue in Iowa

- > 60% corn S rate sites responsive to S application
 - 68% sites responsive with I, sil, fsl, lfs, sl soils
 - 14% sites responsive with sicl, cl soils
- Especially coarse textured, sideslope landscape, eroded, low organic matter soils; no-tillage, reduced-tillage, high crop residue, alfalfa prior crop, no manure application, no S applied in fertilizers or irrigation
- ♦ 47% S response frequency for 110 trials statewide from 2006 – 2013

Summary

Sulfur application rate when needed

- Alfalfa: topdress 20 to 30 lb S/acre
- Corn: 15 lb S/acre fine textured soils
 25 lb S/acre coarse textured soils
- Tools to indicate S deficiency
 - Alfalfa top six-inch plant growth at early bud
 - Corn and soybean ??
 - General field/soil characteristics
 - Visual coloration and growth response
 - Strip trials +/- S for multiple years

Sulfur Fertilizers

- Ammonium Sulfate (21-0-0-24S)
- Ammonium Thiosulfate (12-0-0-26S)
- Gypsum (Calcium Sulfate) (0-0-0-17S)
- Elemental Sulfur (0-0-0-90S)
- Magnesium Sulfate (0-0-0-14S)
- Potassium Magnesium Sulfate (0-0-22-23S)
- Potassium Sulfate (0-0-50-18S)
- N-P-S products (ex. 13-33-0-15S)
- Polyhalite (0-0-14-19S)
- By-Products
 - Lysine manufacturing
 - Soybean soapstock refining process water (Plant Food Solution)
 - Wallboard (gypsum)

Research Support

Honeywell International, Inc. J.R. Simplot Company Mosaic Fertilizer, LLC Foundation for Agronomic Research Calcium Products, Inc. Iowa State University Extension Iowa State University Research Farms Iowa State University FARM

Photo from B. Lang, ISU

IOWA STATE UNIVERSITY University Extension