
Update on Sulfur Response in Iowa Field Crop Production

Sulfur Research History in Iowa

- 40+ years (before 2005) of research across lowa (approximately 200 site-years)
 - Three times statistically significant yield increase
 - One study with multi-year average yield decrease
- Why no response to sulfur?
 - High soil organic matter
 - High subsoil sulfate
 - Atmospheric deposition
 - Manure application
 - Low S demanding crops
 - Fertilizers containing sulfur

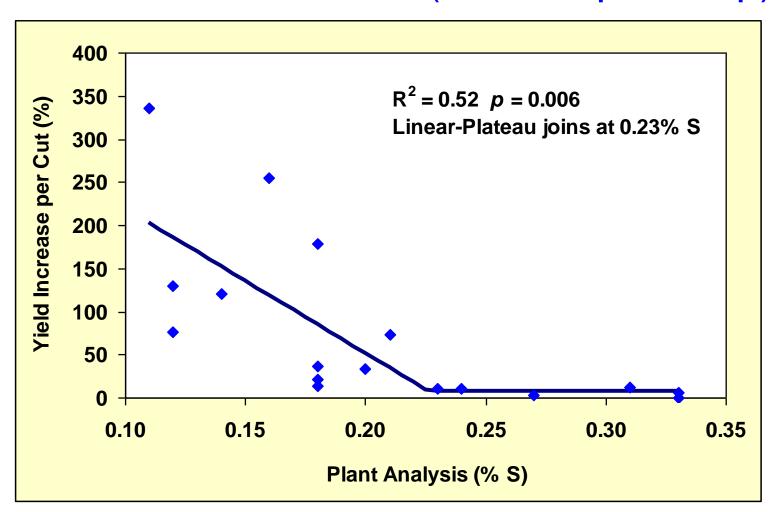
National Atmospheric Deposition Program/National Trends Network http://nadp.isws.illinois.edu 10 kg $SO_4/ha = 3$ lb S/acre

Things Changed

Observation of poor alfalfa growth in Northeast Iowa

Visual Response in Alfalfa to S Application

Alfalfa Response to S Application in Field Areas with Poor and Good Coloration of Alfalfa, 2005-2006


		2	20	2006			
	Cuts	2+3	Cut	2	Cu	it 1	
Sulfur	DM Y	'ield	Plant '	Plant Top S		Yield	
	Ok		Observed	served Growth Ar		ea	
Treatment	Poor	Good	Poor	Good	Poor	Good	
	ton/	acre	%	S	ton/	acre	
None	1.18a	2.99b	0.14a	0.22b	1.10a	2.04b	
Am. sulfate	2.76b	3.26b	0.40d	0.35c	2.18b	2.22b	
Ca. sulfate	2.49b	3.21b	0.41d	0.37c	2.14b	2.19b	
	6.6	7.4	Soil Sulfat	te-S (ppm)		

Three field sites in 2005, Elgin, Gunder and West Union, IA (Fayette & Downs sil soils). Two field sites in 2006, Elgin and Gunder, IA.

Sulfur materials were applied at 40 lb S/acre after first cut in in 2005.

Treatment means followed by the same letter are not significantly different ($p \le 0.10$).

Alfalfa Yield Increase to Applied S vs. Plant S Concentration (six-inch plant top)

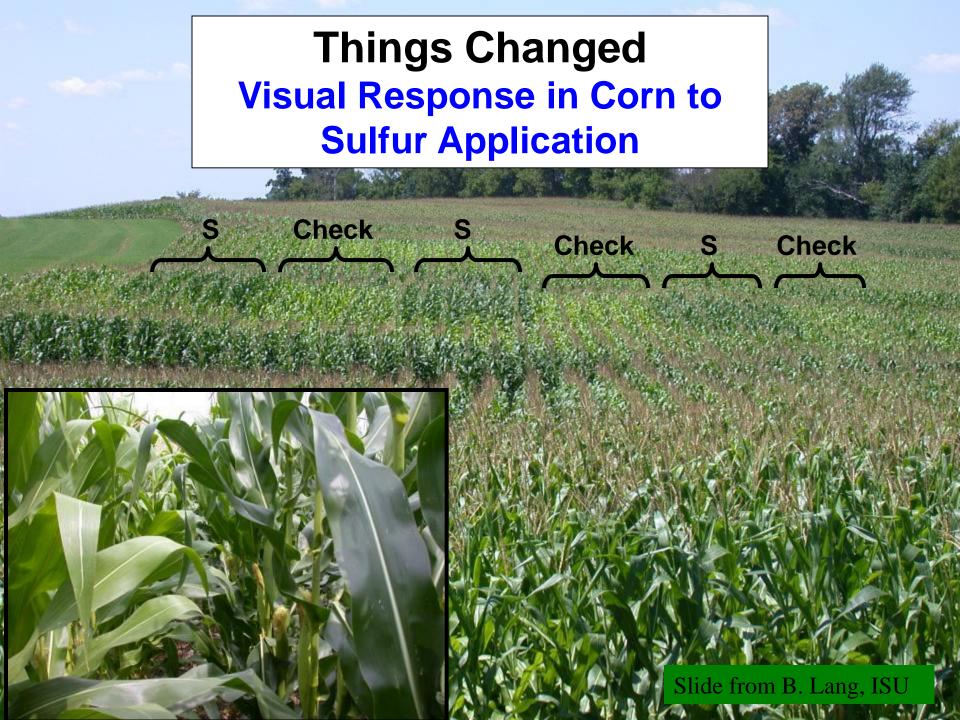
2010-2011 Alfalfa Sulfur Trial Nashua Research Farm

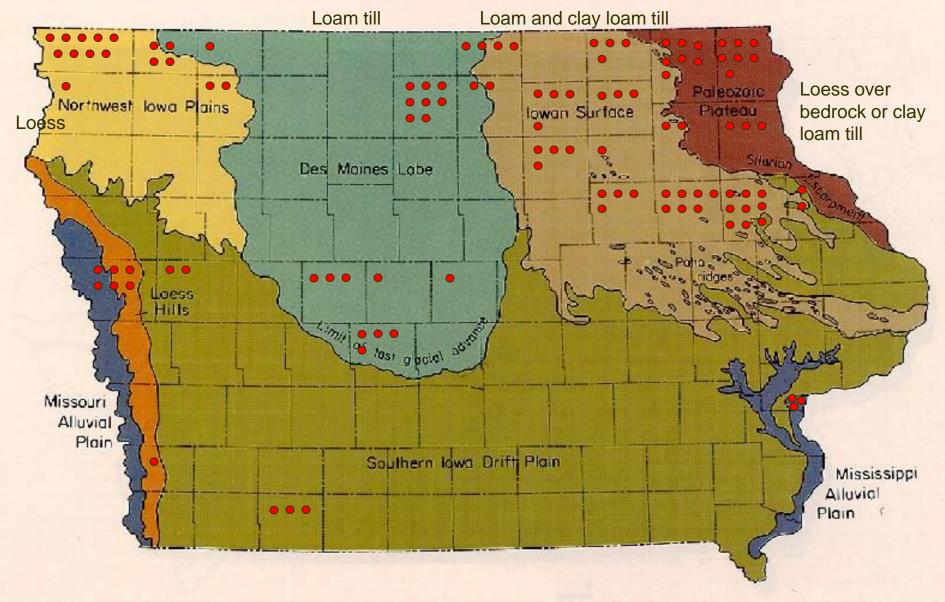
Trt	Forage Yield			Soil S Test		Plant Analysis		
	2010	2011	Mean	2010	2011	2010	2011	
	ton DM/acre			pp	ppm		% S	
None	6.15a	6.44a	6.30a	7.8	7.5	0.22	0.19	
В	6.10a	6.68a	6.39a	6.9	5.8	0.17	0.20	
S	6.91b	7.85b	7.38b	7.4	6.7	0.39	0.47	
B + S	6.67ab	8.07b	7.37b	7.0	6.7	0.36	0.43	

Means followed by the same letter are not different, $p \le 0.05$.

S applied at 40 lb S/acre as gypsum (calcium sulfate).

B applied at 2 lb B/acre as Borate-48.


Fertilizers applied for each year.


Readlyn loam, 3.3% organic matter.

Three harvests in 2010 and four harvests in 2011.

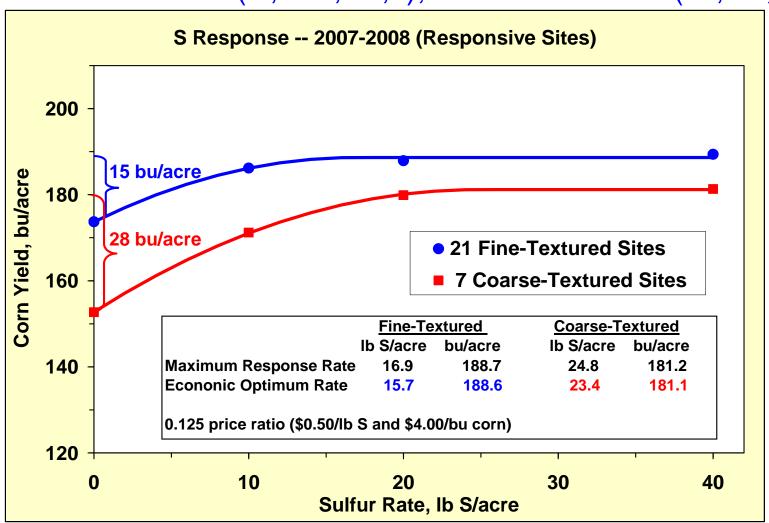
B. Lang and K. Pecinovsky, ISU

Corn and soybean S trial sites, 2006-2013

Sulfur Fertilizer Trials on Corn in Problem Field Areas, Northeast Iowa, 2006

Location	Soil type	Sulfur	Yield
			bu/acre
Lamont 1	Sparta Ifs	No	123 a
		Yes	151 b
Lamont 2	Sparta Ifs	No	154 a
		Yes	198 b
Thorpe 1	Chelsa Ifs	No	88 a
		Yes	108 b
Thorpe 2	Kenyon I	No	196 a
		Yes	204 a
Waukon	Fayette sl	No	96 a
		Yes	172 b
Waterville	Fayette sl	No	118 a
		Yes	171 b

Sulfur applied as calcium sulfate at 40 lb S/acre.


Forty-Seven Corn S Rate Sites in 2007-2009 Northeast – North Central Iowa

- Sulfur (gypsum) at 0, 10, 20 and 40 lb S/acre
- ***** 2007
 - > 17 of 20 sites responded to S application
 - 18 bu/acre average yield increase across all sites
- ***** 2008
 - > 11 of 25 sites responded to S application
 - 7 bu/acre average yield increase across all sites
- ***** 2009
 - 2 sites with no response to S application
- Soils: I, sil, fsl, lfs, sl, sicl, cl

Twenty-Eight Responsive S Rate Sites

2007-2008 North Central - Northeast Iowa

Soils: 21 fine texture (cl, sicl, sil, l); 7 coarse texture (fsl, lfs, sl)

Phosphorus and Sulfur Product Evaluation

- Two sites in northeast Iowa
 - 2006 (silt loam and loam soils)
 - Simplot 13-33-0-15S (SEF)
- Five sites in central to north-central lowar
 - > 2008 2010 (four loam and one loamy fine sand soils)
 - Mosaic 13-33-0-15S (MES15)
 - Mosaic 12-40-0-10S (MES10)
- Compared to AMS and MAP
- Sulfur applied at 10 and 30 lb S/acre
 - N and P equalized at rate with highest S rate

Phosphorus and Sulfur Product Evaluation

Sulfur response at two 2006 sites

Treatment	Ear Leaf S	Grain Yield			
	%	bu/acre			
S-CON	0.15a	196a			
SEF-10	0.18b	211b			
AMS-10	0.18b	211b			
Mean response across both sites, 2006.					

- ❖ No S yield response at five 2008 2010 sites
 - Leaf S concentration increased with all products
- ❖ Across all sites (2006 2010)
 - Yield response to P with all products (17 bu/acre)
 - Leaf P concentration increase with all products

On-Farm Strip Trials Central and Northeast Iowa, 2009

		Previous	Sulfur	Corn Yield		<u>b</u>
Site	County	Crop	Rate	- S	+ S	Resp.
			lb S/acre		bu/acre	
3	Greene	corn	40	225	229	
4	Greene	corn	40	210	215†	5
5	Greene	corn	40	217	228†	11
6	Dallas	soybean	40	201	200	
9	Dallas	corn	40	147	152†	5
10	Dallas	corn	40	135	134	_
1	Fayette	soybean	15	224	236†	12
2	Howard	soybean	20	186	192†	6
7	Dubuque	soybean	30	216	229†	13
8	Floyd		20	199	203	
11	Winneshiek	soybean	30	215	212	

[†] Significantly different, $P \le 0.10$.

Sulfur applied as gypsum.

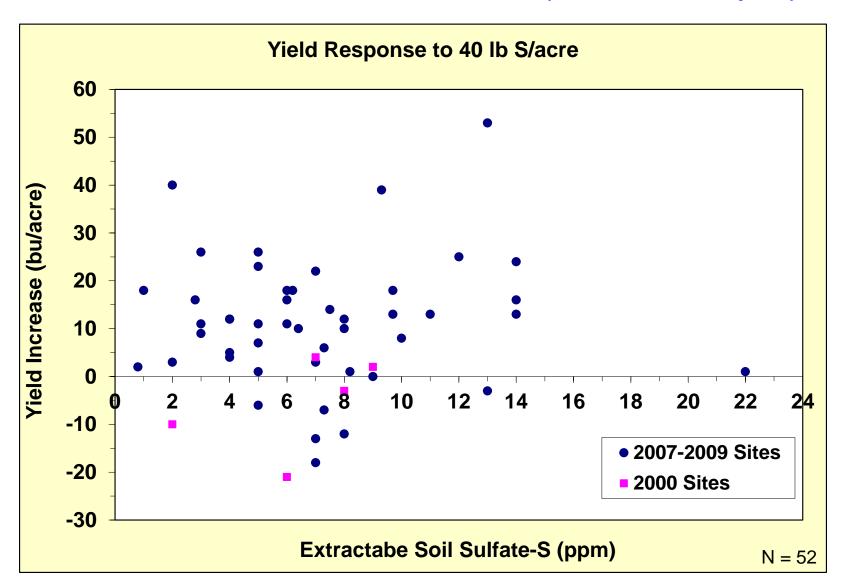
ISU FARM On-Farm Strip Trials Northwest Iowa, 2011-2012

ISU FARM On-Farm Strip Trials, 2011 and 2012 Residual Year

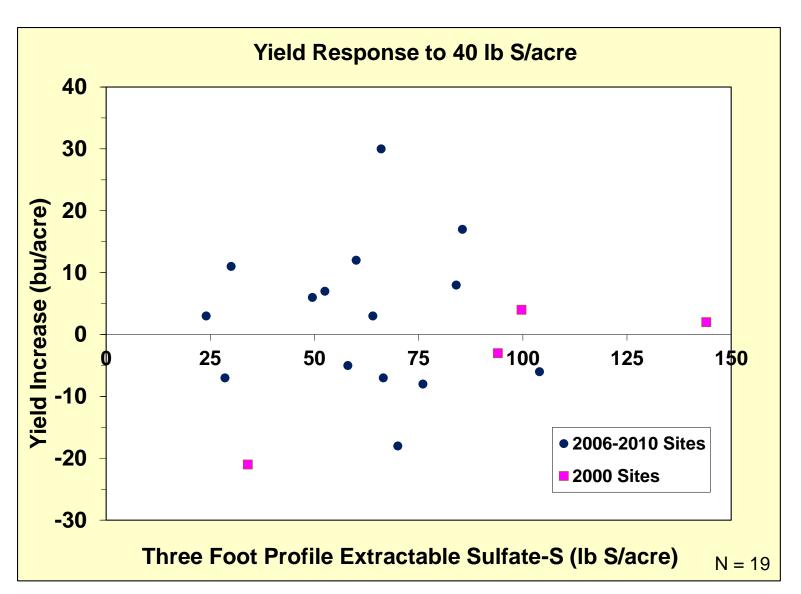
	Soil	Previous	Sulfur	2011	Yield	2012	Yield
County	Texture	Crop	Rate	- S	+ S	- S	+ S
			lb S/acre		bu/a	acre	
Osceola	scl	corn	23	70.9	68.8	188	185
Lyon	scl	corn	23	60.4	60.9		
Lyon	scl	corn	23	60.8	59.3	203	199
Sioux	scl	corn	23	74.3	73.6	173	175
Lyon	scl	soybean	23	209	203		

^{*} Indicates statistical difference at $P \le 0.10$.

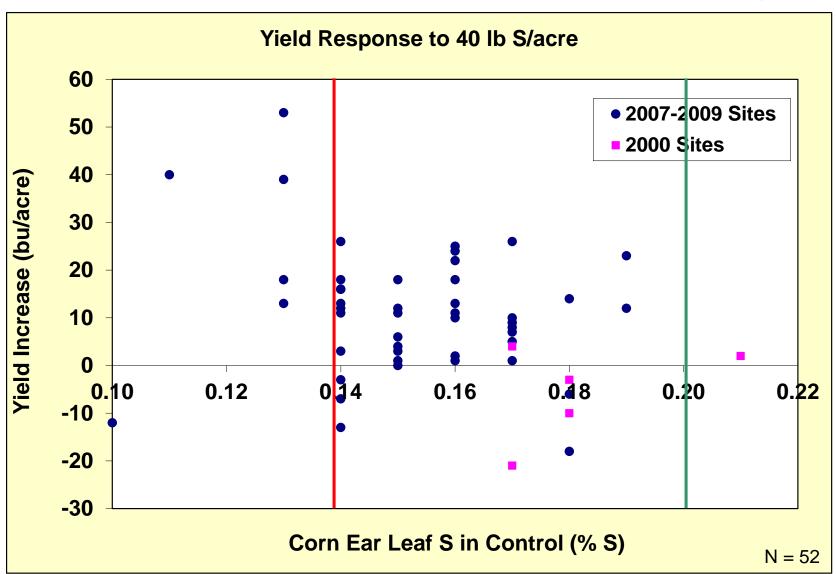
Sulfur applied in spring as gypsum.

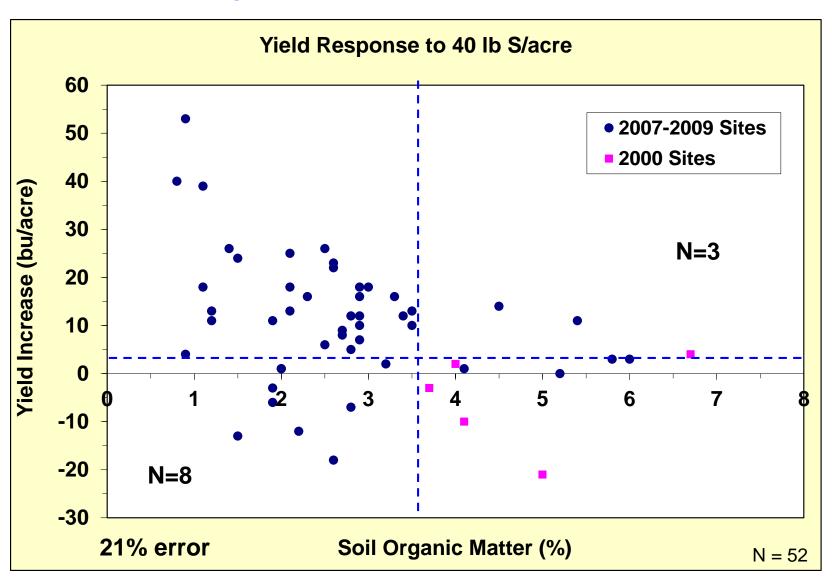

ISU FARM Strip Trials NW-W-SW Iowa, 2012-2013

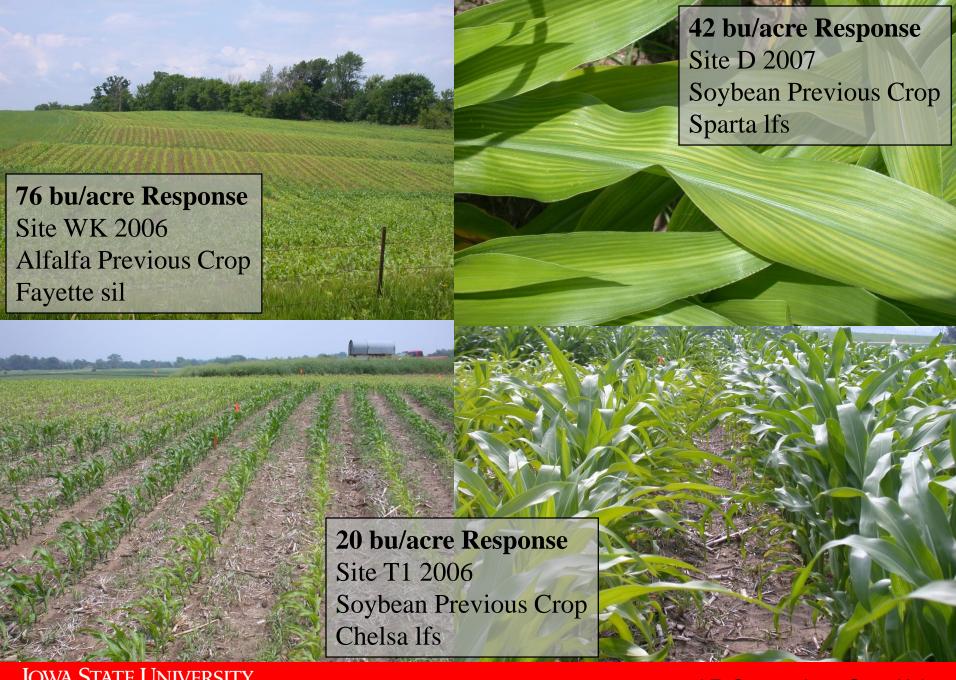
ISU FARM On-Farm Strip Trials, 2012, 2013, and 2013 Residual Year


		Previous	Sulfur	Sulfur 2012 Yield 2013 Yield		Response			
Site	County	Crop Yr 1	Rate	- S	+ S	- S	+ S	'12	'13
			lb S/acre			bu/ac	re		
1c	Mills	soybean	17	217	218				
2c	Taylor	soybean	17	99	106*			7	
3c	Lyon	soybean	15	157	160	40.5	44.3*		3.8
4c	Osceola	soybean	15	198	197				
5c	Dickinson	soybean	15	213	214				
6c	Lyon	soybean	15	140	134*	43.7	42.7	-6	
7c	Lyon	soybean	15	88	79	55.5	53.6		
8c	Crawford	soybean	15	100	132*	45.0	49.1*	32	4.1
9c	Monona	soybean	15	190	195	228	240		
10c	Monona	soybean	15	232	228	69.3	69.5		
11c	Clay	soybean	15	231	235 *	54.8	55.2	4	
1s	Osceola	corn	15	50.2	52.4	201	205		
2s	Monona	corn	15	64.3	63.3	230	236*		6
1n	Taylor	soybean	17			172	181*		9
<u>1n</u>	Taylor	corn	17			45.3	44.1		

^{*} Significant difference at P ≤ 0.10. Sulfur applied in spring as gypsum.


Extractable Soil Sulfate-S (0-6 inch depth)


Soil Profile Extractable Sulfate-S



Corn Ear Leaf S Concentration (R1 Stage)

Soil Organic Matter (0-6 inch depth)

Early Season Sulfur Deficiency Symptoms Can Disappear

2011 Continuous Corn 10 replicated strips +/- 12.2 lb S/acre as ammonium thiosulfate, incorp. 217 bu/acre No S: With S: 216 bu/acre Doug Johnson; Central IA; Picture 6/7/2011

Early Season Sulfur Deficiency Symptoms Can Disappear

2011 Soybean-Corn 0, 5, 10, 20, 40 lb S/acre as gypsum "Higher OM" site: 5.8%; "Lower OM" site: 4.1%

	- was	era minibilitari di Constituti	
		Higher OM	Lower OM
	lb S/acre	bu/a	icre
· 1000年1月1日 - 1	0	192	187
	5	184	188
	10	190	187
	20	191	191
Dave Rueber	40	187	183
ISU Northern Farm, Kanawha	FLSD _{0.10}	NS	NS
150 Northorn I aim, Ixanawna			

Sulfur Rate Trials – Northern Research Farm

	Higher OM Site (5.8%)				Lo	wer OM	Site (4.	1%)
	2011	2012	20)13	2011	2012	20)13
S Rate	S <u>C</u>	SC <u>C</u>	SC	CC <u>C</u>	S <u>C</u>	SC <u>C</u>	SC	CC <u>C</u>
lb S/acre		bu/acre	NDVI		bu/acre			NDVI
0	192	82	152	0.557	187	80	174	0.577
5	184	100	171	0.591	188	99	192	0.619
10	190	105	180	0.657	187	109	191	0.649
20	191	105	179	0.629	191	113	179	0.663
40	187	111	181	0.638	183	104	185	0.671
Sign. _(0.10)	NS	*	*	*	NS	*	*	*

Higher OM site Webster clay loam; lower OM site Clarion loam.

S rates (as gypsum) applied in spring 2011 and 2013 before corn.

Significance either rate, linear, quadratic, cubic, or +S vs. -S.

Dave Rueber, ISU Northern Research Farm, Kanawha, IA.

NDVI from Crop Circle at V10 corn growth stage.

Sulfur Rate Trials – Northern Research Farm

	Next to Lower OM Site					
	2012	20	013			
S Rate	C <u>S</u>	5	S <u>C</u>			
lb S/acre	bu/acre NDVI					
0	35	149	0.620			
5	35	154	0.636			
10	34	150	0.637			
20	34	152	0.635			
40	36	154	0.645			
Sign. _(0.10)	NS	NS	NS			

Clarion silt loam.

S rates (gypsum) in spring 2012 before soybean.

Significance: rate, linear, quadratic, cubic, or +S vs. –S.

Dave Rueber, ISU Northern Research Farm, Kanawha.

NDVI from Crop Circle at V10 corn growth stage.

Sulfur Rate Trials Muscatine Island Research Farm

S Rate	2011	2012	2013					
lb S/acre		bu/acre						
0	72.4	211	259					
10	74.4	207	258					
20	69.6	214	254					
40	72.2	210	262					
Sign. _(0.05)	NS	NS	NS					

Fruitfield coarse sand (1 to 1.5% OM), irrigated.

S rates (gypsum) applied post-emergence.

Leaf S concentrations increased each year with S application.

2013: 1.7 lb SO₄-S/acre-inch irrigation (27 lb S/acre in 16 inches).

Vince Lawson, ISU Muscatine Island Research Farm, Fruitland.

Summary

- Sulfur deficiencies an issue in Iowa
 - > 60% corn S rate sites responsive to S application
 - Especially coarse textured, sideslope landscape, low organic matter, eroded soils; no-tillage, reduced-tillage, alfalfa prior crop, no manure application, no S applied in fertilizers or irrigation
 - 68% sites responsive with I, sil, fsl, lfs, sl soils
 - 14% sites responsive with sicl, cl soils
- 47% S response frequency for 110 trials statewide from 2006 – 2013
 - > 33% S response frequency for 2009 2013

Summary

- Sulfur application rate when needed
 - Alfalfa: topdress 20 to 30 lb S/acre
 - Corn: 15 lb S/acre fine textured soils25 lb S/acre coarse textured soils
- Tools to indicate S deficiency
 - Alfalfa top six-inch plant growth at early bud
 - Corn and soybean ??
 - General field/soil characteristics
 - Visual coloration and growth response

Sulfur Fertilizers

- Ammonium Sulfate (21-0-0-24)
- Ammonium Thiosulfate (12-0-0-26)
- Gypsum (Calcium Sulfate) (0-0-0-17)
- Elemental Sulfur (0-0-0-90)
- Magnesium Sulfate (0-0-0-14)
- Potassium Magnesium Sulfate (0-0-22-23)
- Potassium Sulfate (0-0-50-18)
- ❖ N-P-S products (ex. 13-33-0-15)
- By-Products
 - Lysine manufacturing
 - Soybean soapstock refining process water (Plant Food Solution)
 - Wallboard (gypsum)

Research Support

- Honeywell International, Inc.
- J.R. Simplot Company
- Mosaic Fertilizer, LLC
- Foundation for Agronomic Research
- Calcium Products, Inc.
- Iowa State University Extension
- Iowa State University Research Farms
- Iowa State University FARM

Slide from B. Lang, ISU