Secondary and Micronutrients

John E. Sawyer Professor Soil Fertility Extension Specialist Department of Agronomy

IOWA STATE UNIVERSITY Extension and Outreach

Plant Essential Element Sulfur (S)

- Movement in plant
 - Relatively non-mobile
- Functions
 - Proteins, chlorophyll and photosynthesis
- Deficiency symptoms
 - Yellowing/chlorosis stripping of younger leaves
 - Plant yellowing, stunting, and spindly plants with severe deficiency
 - Easily mistaken with nitrogen
- Plant available form: sulfate (SO₄²⁻)

Sulfur Sources

Where does crop-available sulfur come from?

- Soil organic matter
 - Large pool of sulfur in most soils
- Subsoil sulfate
- Rock degradation/accumulated gypsum
- > Atmospheric deposition
 - Volcanic emission
 - Marine gases
 - Coal/diesel burning
- Manure
- Fertilizers/byproducts containing sulfur
- Irrigation water

Crop Sulfur Uptake

Corn at 200 bu/acre (lowa trials)

- > 8 lb S/acre grain (0.04 lb S/bu)
- > 5 lb S/acre vegetation (1.3 lb S/ton d.m.)
- 14 lb S total
- Alfalfa (Iowa trials)
 - > 5-6 lb S/ton d.m.
- Modern Corn and Soybean
 - Corn 0.07 lb S/bu
 - Soybean 0.10 lb S/bu
 - Alfalfa 5 lb S/ton

IOWA STATE UNIVERSITY Extension and Outreach

Total Sulfur Deposition (wet+dry) National Atmospheric Deposition Program

IOWA STATE UNIVERSITY Extension and Outreach

Sulfur Supply to Crops Changed Observation of poor alfalfa growth in Northeast Iowa

IOWA STATE UNIVERSITY Extension and Outreach

Alfalfa Response to S Application in Field Areas with Poor and Good Coloration of Alfalfa, 2005-2006

	2005				2006		
	Cuts 2+3 DM Yield		Cut	2	Cu	Cut 1	
Sulfur			Plant	Top S	DM	DM Yield	
		0	rea				
Treatment	Poor	Good	Poor	Good	Poor	Good	
	ton/acre		%	S	ton/acre		
None	1.18a	2.99b	0.14a	0.22b	1.10a	2.04b	
Am. sulfate	2.76b	3.26b	0.40d	0.35c	2.18b	2.22b	
Ca. sulfate	2.49b	3.21b	0.41d	0.37c	2.14b	2.19b	
	6.6	7.4 S	oil Sulfat	te-S (ppm)		

Three field sites in 2005, Elgin, Gunder and West Union, IA (Fayette & Downs sil soils). Two field sites in 2006, Elgin and Gunder, IA.

Sulfur materials were applied at 40 lb S/acre after first cut in in 2005.

Treatment means followed by the same letter are not significantly different ($p \le 0.10$).

Alfalfa Yield Increase to Applied S vs. Plant S Concentration (six-inch plant top)

IOWA STATE UNIVERSITY Extension and Outreach

Forty-Seven Corn S Rate Sites in 2007-2009 Northeast – North Central Iowa

- Sulfur (gypsum) at 0, 10, 20 and 40 lb S/acre
 2007
 - > 17 of 20 sites responded to S application
 - 18 bu/acre average yield increase across all sites
- ***** 2008
 - > 11 of 25 sites responded to S application
 - 7 bu/acre average yield increase across all sites
- ***** 2009
 - > 2 sites with no response to S application

Twenty-Eight Responsive S Rate Sites 2007-2009 North Central - Northeast Iowa

Soils: 21 fine texture (cl, sicl, sil, l); 7 coarse texture (fsl, lfs, sl)

IOWA STATE UNIVERSITY Extension and Outreach

Extractable Soil Sulfate-S

Corn Ear Leaf S Concentration

IOWA STATE UNIVERSITY Extension and Outreach

Soil Organic Matter

76 bu/acre Response Site WK 2006 Alfalfa Previous Crop Fayette sil

> Zero bu/acre Response Site Mason City 2008 Soybean Previous Crop Readlyn loam

IOWA STATE UNIVERSITY Extension and Outreach 20 bu/acre Response Site T1 2006 Soybean Previous Crop Chelsea lfs

> Zero bu/acre Response Ames Site 2001 Soybean Previous Crop Clarion loam

Sulfur Rate Trials – Northern Research Farm

	Higher OM Site (5.8%)		Lower OM Site (4.1%)			
	2011	2012	2013	2011	2012	2013
S Rate	S <u>C</u>	SC <u>C</u>	SCC <u>C</u>	S <u>C</u>	SC <u>C</u>	SCC <u>C</u>
lb S/acre	bu/acre			bu/acre		
0	192	82	152	187	80	174
5	184	100	171	188	99	192
10	190	105	180	187	109	191
20	191	105	179	191	113	179
40	187	111	181	183	104	185
Sign. (0.10)	NS	*	*	NS	*	*

Higher OM site Webster clay loam; lower OM site Clarion loam. S rates (as gypsum) applied in spring 2011 and 2013 before corn. No S applied before corn in 2012.

Significance either rate, linear, quadratic, cubic, or +S vs. –S. Dave Rueber, ISU Northern Research Farm, Kanawha, IA

Summary

Sulfur deficiency an issue in Iowa

- > 60% corn S rate sites responsive to S application
- Especially coarse textured, sideslope landscape, low organic matter, eroded soils; no-tillage, reduced-tillage, alfalfa prior crop, no manure application, no S applied in fertilizers or irrigation
- Approximately 50% S response frequency in corn for trials statewide from 2006 – 2018

Summary

Sulfur application rate when needed

- Alfalfa: topdress 20 to 30 lb S/acre
- Corn/Soybean:
 - 15 lb S/acre fine textured soils
 - 25 lb S/acre coarse textured soils
 - Apply every-other year to corn
- Tools to indicate S deficiency
 - Alfalfa top six-inch plant growth at early bud
 - General field/soil characteristics
 - Visual coloration and growth response
 - Replicated strip trials +/- S for multiple years

Sulfur Fertilizers

- Ammonium Sulfate (21-0-0-24S)
- Ammonium Thiosulfate (12-0-0-26S)
- Gypsum (Calcium Sulfate) (0-0-0-17S)
- Elemental Sulfur (0-0-0-90S)
- Magnesium Sulfate (0-0-0-14S)
- Potassium Magnesium Sulfate (0-0-22-23S)
- Potassium Sulfate (0-0-50-18S)
- N-P-S products (ex. 13-33-0-15S)
- Polysufate (0-0-14-19S)
- By-Products
 - Lysine manufacturing
 - Soybean soapstock refining process water
 - Wallboard (gypsum)
- Sulfur in MAP, DAP, TSP

Sulfur Fertilizers

- Incidental S applied in MAP and DAP applications?
- Analysis of 65 MAP, 46 DAP and 7 TSP samples by the Office of the Indiana State Chemist (data provided by Dr. Jim Camberato, Purdue Univ.)
- MAP: 1.8% mean (1.3 2.4%S)
- DAP: 1.9% mean (1.4 3.3% S)
- ♦ TSP: 1.6% mean (1.4 1.9% S)
- ♦ At 75 lb P₂O₅/acre
 - > MAP 2.0 3.6 lb S/acre
 - DAP 2.3 5.4 lb S/acre
 - > TSP 2.3 3.1 lb S/acre

Managing Ca and Mg on Iowa Soils

Critical soil test level (sufficiency)

- No Ca or Mg soil test interpretation for Iowa soils
- Neither generally deficiency in Iowa soils
 - Maybe Mg K NH₄ grass tetany concern in some soils
- Ca and Mg managed by limestone application from local quarry to acidic soils

Zinc Deficiencies

- Sensitive crops
 - Corn, sorghum
- Soil Situation
 - Low organic matter, high pH (>7.4), eroded soil
 - Coarse texture, restricted rooting
 - High P application in conjunction with borderline or low zinc availability
 - High soil P alone does not create deficiency
 - > Organic soils
- Climatic Conditions
 - Cool and wet soil

Iowa State University Zn Recommendations for Corn and Sorghum

	Zinc Soil Test (ppm)			
Soil Test Category:	Low Marginal		Adequate	
DTPA Extractable Zn:				
	0-0.4	0.5-0.8	0.9+	
	Zn to apply broadcast (lb/acre)			
	10	5	0	
	Zn to apply in band (lb/acre)			
	2	1	0	

IOWA STATE UNIVERSITY

Extension and Outreach

ISU Extension Publication PM 1688

Previous Zn Research With Corn

Webb 1970s-1980s four long-term trials

- Continuous corn, broadcast Zn, 2 sources
- Isolated responses when DTPA Zn was < 1.0</p>
- Webb & Mallarino 1965-1990 long-term trial
 - Zn broadcast and several P treatments very low to extremely high
 - No yield increase, but DTPA Zn was >1 ppm
- Bickel & Killorn 2007, 12 strip trials in NC Iowa
 - Planter-band Zn sulfate, soil Zn low to high
 - 61 yield comparisons, 2 increases and 7 decreases; no relationship with soil Zn or pH

Iron Deficiencies

Sensitive Crops

Soybean

Complicated-Interrelated Soil Conditions

- > High pH (usually >7.4 in Iowa) with free calcium carbonates in surface soil
- Carbonates and Bicarbonates (CO₃²⁻, HCO₃⁻)
- High salt level
- Poorly aerated soils
- High soil nitrate
- Wet Conditions

Management of Iron Deficiencies

- Soybean variety choice
- Not soil applied fertilizer treatments
 - Not iron or sulfur or gypsum
- Not seed coated iron treatments
 - Expensive and limited yield response
- Maybe in-furrow chelated (ortho-ortho FeEDDHA) iron fertilizer
- Maybe reduced soil nitrate-N

LINIVERSITY

Extension and Outreach

Soybean inter-seeded into cover crop

Management of Iron Deficiencies

- Maybe foliar applied chelated iron
 - FeedDHA Sequestrene 138, ortho-ortho)
 - Early when plants have two fully developed trifoliolate leaves
 - Application within 7 days after chlorosis symptoms expressed
 - 0.15 lb Fe plus surfactant in 15 to 30 gal water over plants
 - May require multiple applications

Recent Micronutrient Research Resurgence in Interest for Micronutrient Applications

Research in 2012 – 2014 Antonio Mallarino and His Research Group

Micronutrients Applied Foliar

- ✤ 46 soybean trials, 35 on farmers' fields
- 10 corn trials at ISU research farms
- B, Cu, Mn, Zn, and a mixture; 4 replications
- Sources:
 - Boric acid (Max-In B, 8% B)
 - EDTA Cu (Max-In Cu, 5% Cu)
 - EDTA Zn (MicroBolt Zn, 9% Zn)
 - EDTA Mn (MicroBolt Mn, 6% Mn)
- Sprayed twice: at V6 for both crops; V10 in corn, R2-R3 in soybean; with total amount applied:
 - 0.16 lb B /ac
 - 0.08 lb Cu /ac
 - 0.33 lb Mn/ac
 - 0.50 lb Zn/ac

Foliar Research in 2012 & 2014

- ISU field specialists on-farm project
- 26 corn and soybean strip trials
 - North, NW, and SW Iowa
 - 9 with corn
 - > 17 with soybean
 - > 3 to 5 replications
- Sprayed a mixture of B, Mn, and Zn
 - One application at V6 to V8 stage
 - > 1 pint/acre Max-In Boron (8% B, boric acid)
 - I quart/acre Max-In B ZMB (0.1% B, 3%Mn, 4% Zn, 3.6% S)

Micronutrients Applied to Soil, 2012-2014

- 8 trials, 3 years each, 4 began with corn and 4 with soybean
- Treatments
 - > B, Mn, Zn planter band with MAP
 - Mixture band or broadcast with MAP
- Solid granulated fertilizers
 - Boron: NuBor 10 (boric acid, 1.5% S):
 - banded, 0.5 lb B/ac
 - broadcast, 2 lb B/ac
 - > Mn: Broadman20 (12% S), 5 lb Mn/ac
 - Zn: EZ20 (14% S), 5 lb Zn/acre

IOWA STATE UNIVERSITY Extension and Outreach

Yield Response to Micronutrients

- Foliar fertilization plot trials (56 fields)
 - No grain yield increase at any trial
 - Yield decrease at one soybean trial from Cu, Zn, and the mixture
 - Yield decrease from the mixture each year
- Foliar fertilization strip trials (26 fields)
 - > One soybean yield increase
 - > One corn yield decrease
- Fertilization to soil (8 fields, 3 years each)
 No yield increase or decrease at any trial

Micronutrient Research Conclusions

- Very unlikely corn and soybean yield response to micronutrients in Iowa
- Published sufficiency levels for soil or tissue tests are too high
- Little or no agreement between soil and tissue tests
- Couldn't develop interpretations due to no response

Micronutrient Research Conclusions

- Yield level is not a good indication of micronutrient need
- Don't trust published soil or tissue test interpretations, maybe use the lowest suggested sufficiency values
- Lime acid soils and watch sandy, badly eroded, or calcareous soils

Questions?

This institution is an equal opportunity provider. For the full non-discrimination statement or accommodation inquiries, go to www.extension.iastate.edu/diversity/ext.

