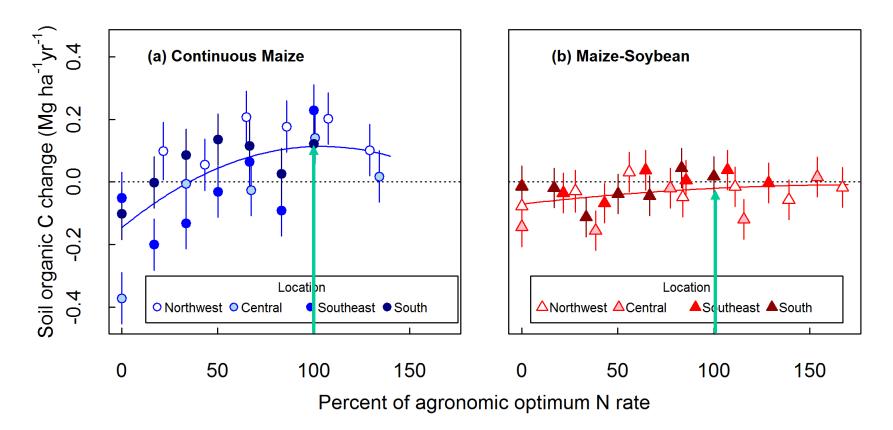

Soil Nitrogen Dynamics

John E. Sawyer Professor Soil Fertility Extension Specialist Department of Agronomy

Nitrogen Cycle

Symbiotic N₂ Fixation


- Accomplished by bacteria (Rhizobium) that infect the roots of legumes
 - Alfalfa
 - Clover
 - Soybean
- Nitrogen fertilizer application not required for legume crop production

Symbiotic and Soil Derived N in Soybean Loss or Gain of N from Soil

				Soil N	Symbiotic	Loss or
	Dry	Total	Symbiotic	Export	N Return in	Gain of
	Matter	Ν	Ν	in Grain	Residue	N
				lb/acre		
Grain	2,100	152	61	91		
Residue	3,400	40	16		16	
Total	5,500	192	77			-75

40% of plant N from symbiosis (Source: Heichel and Barnes, 1984)

Nitrogen Application Needed to Maintain Soil Carbon with SC and CC

^{0.1} Mg C/ha/yr ≈ 90 lb C/acre/yr

Poffenbarger et al., 2017

IOWA STATE UNIVERSITY Extension and Outreach

Mineralization

- General process (microbial):
 - 1. Organic compounds \longrightarrow NH₃
 - 2. $NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$
- Rate depends on:
 - > Temperature and moisture
 - Carbon:Nitrogen (C:N) ratio of organic material
 - Aeration
 - Size of plant residue
 - ≻ pH

Conditions favoring plant growth favor mineralization

Immobilization

 Incorporation of inorganic N into soil microbial biomass

- Favored by addition of carbon-rich crop residue (straw, corn stalks) to soil
- Very rapid in warm, moist soils

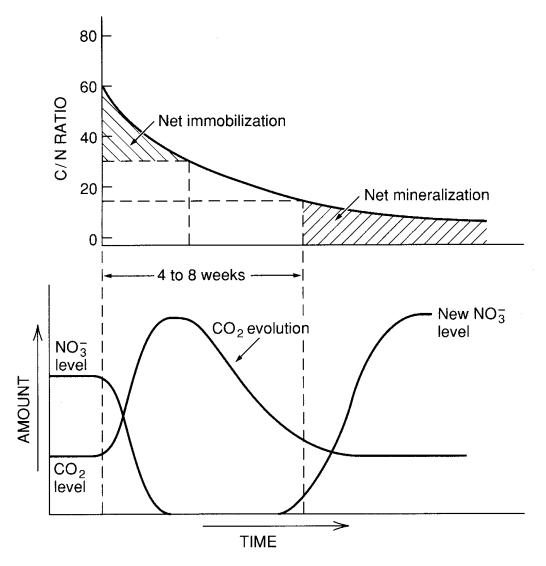


FIGURE 5.5 Changes in NO_3^- levels of soil during the decomposition of low-N crop residues. Courtesy of B. R. Sabey, Univ. of Illinois.

Example Cornstalk Decomposition

Assume:

8,000 lb cornstalk residue per acre
At 40% C = 3,200 lb C in cornstalks
At 60:1 C:N ratio = 50 lb N in cornstalks
8:1 C:N of microbial population
 (remaining residue material in soil)
75% of C used for energy and lost as CO₂

3,200 lb C x 0.75 = 2,400 lb C to atmosphere as CO_2 3,200 lb C - 2,400 lb C = 800 lb C remaining in soil 800 lb C ÷ 8 = 100 lb N in microbial tissue 50 lb N in cornstalks - 100 lb N in microbes = - 50 lb N Therefore 50 lb N Immobilized

Soil Organic Matter N Mineralization First Year of Cultivation

Assume:

5.0 % organic matter (OM) soil4 % OM loss/yearAverage 5% N in soil OM2,000,000 lb soil in 6 2/3 inch depth

5.0% OM x 2,000,000 lb x 4% OM loss/yr x 5% N = 200 lb N/acre

Produce \cong 180+ bu/acre corn yield

5,000 lb N in AFS

IOWA STATE UNIVERSITY Extension and Outreach

Soil Organic Matter N Mineralization After Many Years of Cultivation

Assume:

3.0 % organic matter (OM) soil2 % OM loss/yearAverage 5% N in soil OM2,000,000 lb soil in 6 2/3 inch depth

3.0% OM x 2,000,000 lb x 2% OM loss/yr x 5% N = 60 lb N/acre

Produce \cong 50 bu/acre corn yield

3,000 lb N in AFS

IOWA STATE UNIVERSITY Extension and Outreach

Corn Yield Without N Application

Northern Research Farm, 1985-2001						
	N rate applied to corn, lb N/acre					
Crop	0 80 160 240					
	bu/acre					
<u>C</u> -C	56	113	138	149		
<u>C</u> -S 102 141 159 163						
<u>C</u> -O-A-A 157 158 164 161						
Oat underseeded with forage legume.						

First Year Corn After Forage Legume

First Year Corn N Need Following Forage Legume

	0 0		
	Site	Responsive	Optimum
State	Years	Sites	N Rate
			lb/acre
lowa (Voss and Shrader, 1981)	11	0	0
lowa (Morris et al., 1993)	29	6	25
Wisconsin (Bundy and Andraski, 1993)	24	0	0
Minnesota (Schmitt and Randall, 1994)	5	1	42
Illinois (Brown and Hoeft, 1997)	4	0	0
Pennsylvania (Fox and Piekielek, 1998)	2	0	0

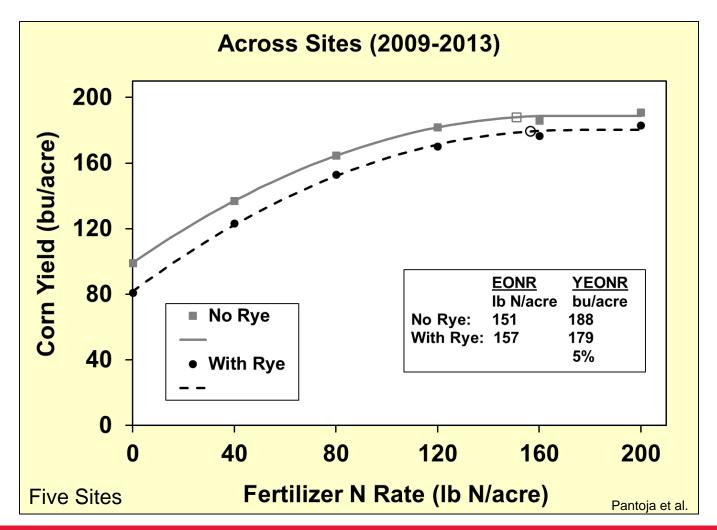
Reasons for Reduced N Need When Corn Grown After Soybean Compared to Corn After Corn

- Greater net N mineralization from soil system
 - Less crop residue following soybean
 - Mineralization/Immobilization difference
 - More rapid soybean residue decomposition
 - Earlier fall residue to soil system
 - Higher quality residue (i.e. lower C:N ratio of some residue components)

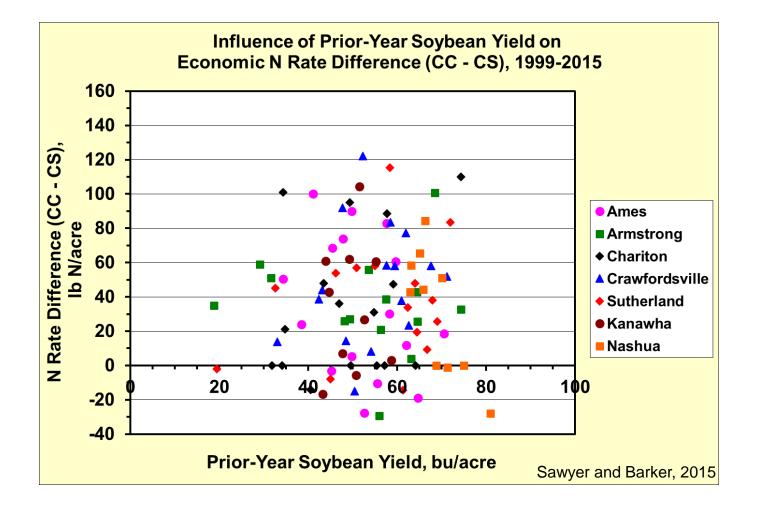
Enhanced soil organic matter mineralization

Corn Stover Removal and Tillage Effect on Yield and N Fertilization in Continuous Corn

Effect of tillage and residue removal on corn grain yield and economic optimum N rate across sites, 2009-2011.

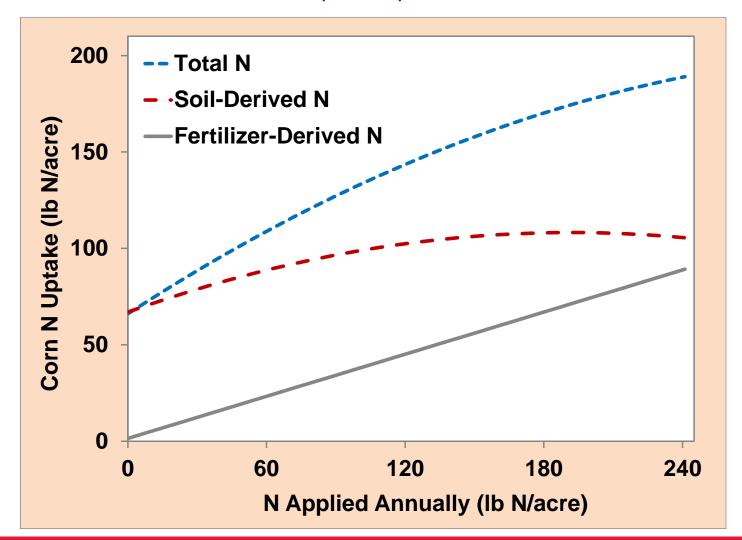

Residue	Chisel Plow		No-Tillage	
Removal	EONR YEONR		EONR	YEONR
	lb N/acre	bu/acre	lb N/acre	bu/acre
None	228	179	227	162
50%	203	177	212	173
100%	185	181	189	170

EONR, economic optimum N rate; YEONR, yield at EONR.


EONR and YEONR at 0.10 N:corn grain price ratio.

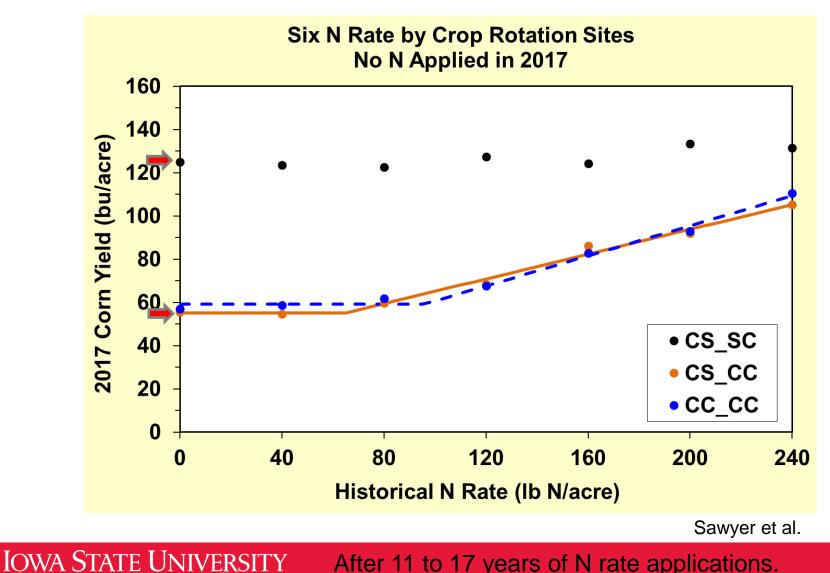
J. Pantoja et al., Iowa State University

Winter Rye Cover Crop Effect on N Fertilization (Soybean-Corn Rotation)



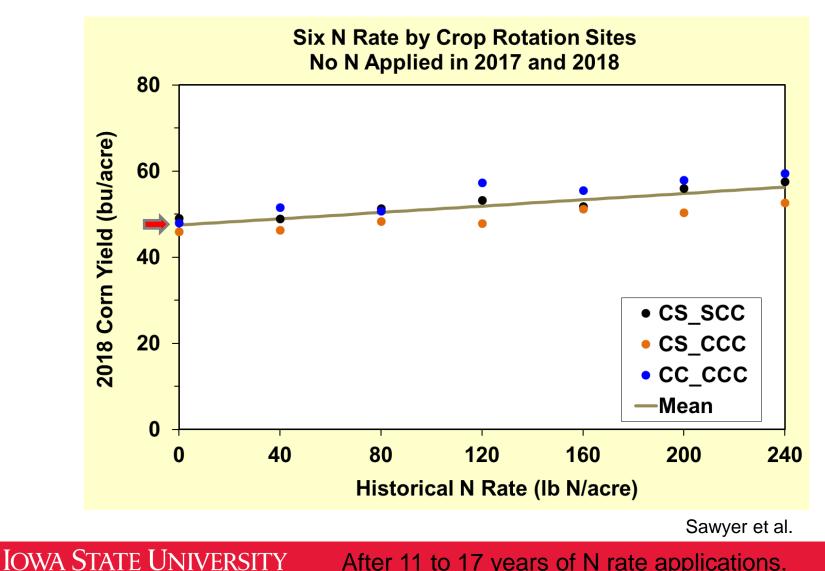
Prior-Year Soybean Yield vs. Next Year Difference in EONR for CC and SC

IOWA STATE UNIVERSITY Extension and Outreach

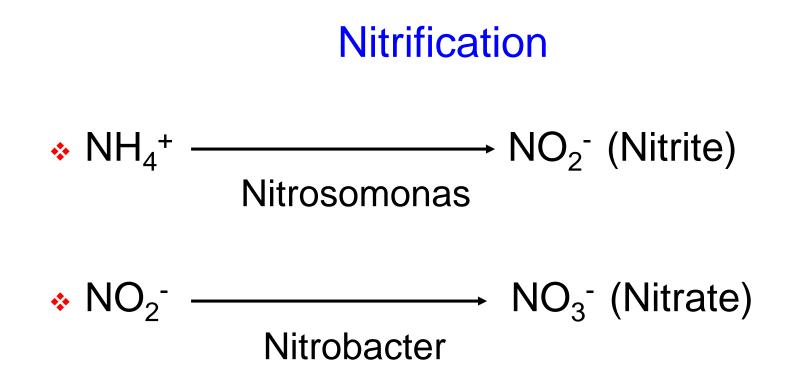

Corn N Uptake From Soil and Fertilizer Stevens et al. (2005) Univ. of Illinois

IOWA STATE UNIVERSITY Extension and Outreach

/ariation in Mineralization Example				
	Crop	Crop	Additional	Fertilizer
	Uptake	Available	Need	Rate
<u>Assume:</u>		lb N	Vacre	
3.5% soil organic matter (OM)				
50% fertilizer N uptake efficiency				
200 bu/acre corn crop	200			
100 lb N crop residue (50% release	e)	50		
Precipitation		10		
Good Growing Conditions:				
3% OM N release		70		
Fotal crop available N		130		
Supplemental N need			70	
Fertilizer N application rate				140
25% Less OM mineralization:				
Organic matter N release		50		
Fotal crop available N		110		
Supplemental N need			90	
Fertilizer N application rate				180
25% Greater OM mineralization:				
Drganic matter N release		90		
Fotal crop available N		150		
Supplemental N need			50	
Fertilizer N application rate				100


Residual Effect of Historical N Application

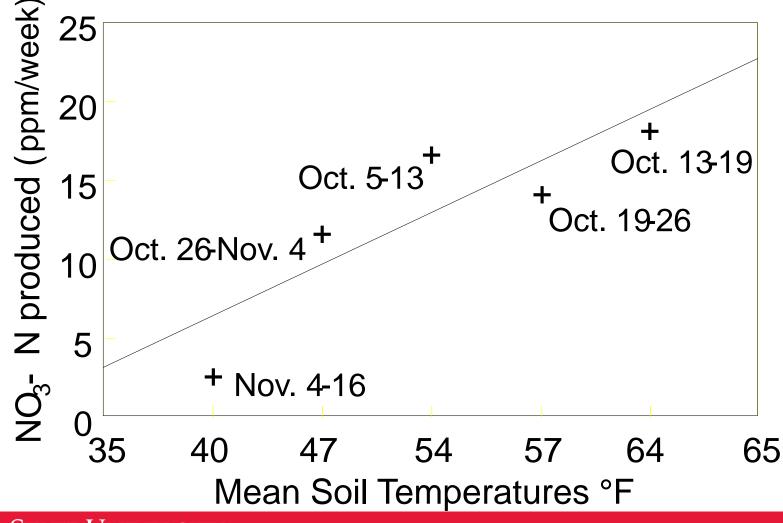
Extension and Outreach


After 11 to 17 years of N rate applications.

Residual Effect of Historical N Application

Extension and Outreach

After 11 to 17 years of N rate applications.



Nitrification inhibitor designed to reduce biological conversion of NH₄⁺ to NO₂⁻

Nitrification

- Optimum temperature is 86 95 °F
 - Rate slows at temperatures below 50° F and is essentially zero if the soil is frozen
- Soil pH
 - Increases with increasing pH
 - Optimum at pH 8.5
 - Nitrobacter sensitive to alkaline conditions and free ammonia
- Soil moisture
 - > Highest at field capacity

Influence of Temperature on Nitrification in Field Soils

Application Time and Nitrapyrin Impact on Ammonium Remaining from Anhydrous Ammonia Application

Sample Date

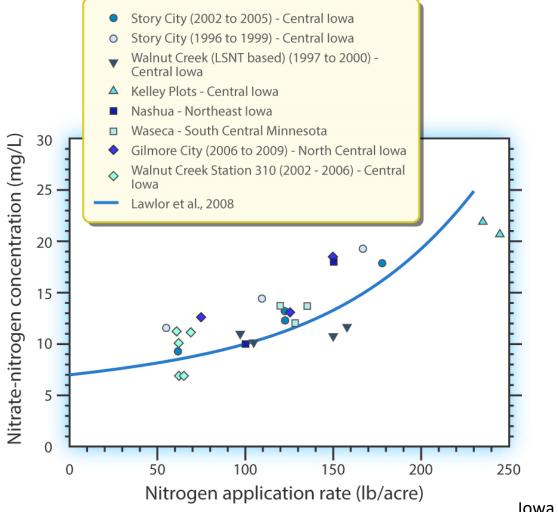
Application	Nitrapyrin	12/8	4/2	5/3
		% NH	₄ -N Rema	aining
Nov. 7 (> 50 °F)	No	39	19	3
	Yes	63	28	17
Nov. 18 (< 50 °F)	No	40	33	7
	Yes	57	58	26

Urbana, IL. J. E. Sawyer

IOWA STATE UNIVERSITY

Extension and Outreach

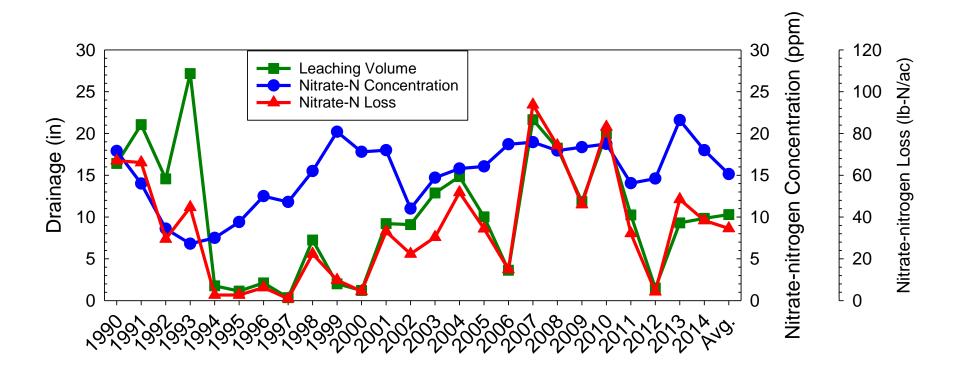
Influence of Temperature on Persistence of N-Serve					
	Temperature	N-Serve Half Life, days			
	°F	<u>sicl soil</u>	<u>sil soil</u>		
Touchton (IL)	40	92	22		
	55	70	< 7		
	70	20	< 7		
		<u>solution</u>			
Bremner (IA)	40	> 320			
	70	14			
	86	4			


Chemical hydrolysis is dominant degradation

Effect of temperature on degradation rate is approximately parallel nitrification activity

Leaching

- Nitrate moves freely in soil with water
- Losses of nitrate can be rapid
- A high percent of nitrate lost through tile lines occurs in spring rainfall events
- Nitrate in tile flow comes from soil-derived nitrate and applied N


Nitrogen Rate Effect on Nitrate Losses in Tile Drainage (Iowa)

Iowa Nutrient Reduction Strategy

IOWA STATE UNIVERSITY Extension and Outreach

Influence of Precipitation/Leaching Volume on Nitrate-N In Tile Drainage

Combined Corn-Soybean System – Same N management – Early Spring Sidedress at 150-160 lb-N/acre. Helmers et al. Iowa State University.

Denitrification

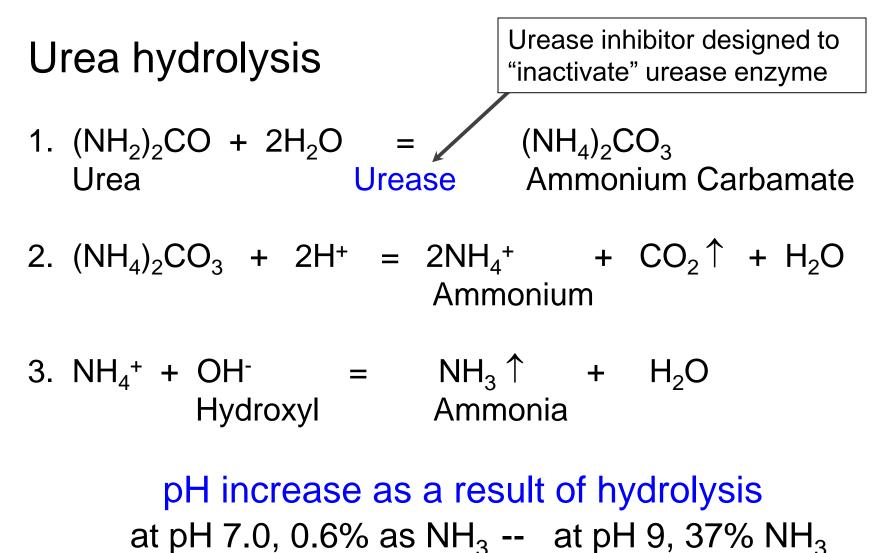
- Biological conversion of nitrate to N gases
- Occurs when the soil pores are saturated

$$NO_3^- \longrightarrow NO_2^- \longrightarrow N_2O \longrightarrow N_2$$

Air quality issue with N₂O Small amount per acre but greenhouse gas

Conditions That Favor Denitrification

- Anaerobic conditions (saturated soil)
- Suitable temperature
 - Rate increases > 50° F
- Decomposable organic material
- Suitable pH
 - > > 5.5
- Presence of denitrifying bacteria


Rate of Denitrification Per Day in a Webster Soil As Affected by Temperature ^a

	N loss per day in lb/acre			
Temp in °F	Surface 0-6"	27-36"		
37	0.3	0		
50	3.3	0.8		
63	8.3	1.2		
75	12.3	3.2		

^a Treated at rate of 400 lb N/acre and incubated for 5 days under waterlogged conditions.

2 to 4% nitrate-N loss per day (55 to 75+ °F soil temperature)

Urea Volatilization

Volatilization

- Field conditions increasing urea hydrolysis and NH₃ loss
 - No rainfall/incorporation after application
 - > High crop residue on soil surface
 - > High soil pH (alkaline soils)
 - High temperatures
 - Moist to drying soils
 - Low soil clay and organic matter (low buffer and ability to absorb ammonium)

Volatilization

- Field conditions decreasing urea hydrolysis and NH₃ loss
 - 0.25 to 0.5 inch rainfall within 1-2 days after application
 - Surface temperatures below 50° F
 - Surface soil pH < 7.0</p>
 - Dry soil surface
 - Low crop residue on soil surface
 - > High buffer capacity soil

Questions?

This institution is an equal opportunity provider. For the full non-discrimination statement or accommodation inquiries, go to www.extension.iastate.edu/diversity/ext.