Liquid Swine Manure Nutrient Utilization Project

John Sawyer
John Lundvall
Antonio Mallarino
Sudipta Rakshit
Monica Barbazan
Daniel Barker
Angie Rieck-Hinz

IOWA STATE UNIVERSITY
University Extension
Liquid Swine Manure Nutrient Utilization Project

Field Demonstration Objectives:

- Work with producers to implement manure strip application demonstrations
- Calibrate liquid swine manure application
- Document manure nutrient content, variability, and intended vs. applied nutrients
- Document crop productivity based on liquid swine manure N and P
- Compare manure nutrient availability to fertilizer N and P
- Monitor agronomic and environmental soil test P
Methods and Demonstration Activities

- **2000-2003**
 - 46 sites and 16 cooperators

- **Pre-sample manure**
 - Swine finishing facilities
 - Under-building pit or outdoor cement tank (2)
 - Dip from surface or probe depth

- **Multiple manure samples during application**
 - Pits stirred during application

- **Calibrate applicator**
 - Weight, speed, flow/rate monitor
Methods and Demonstration Activities

- Replicated manure strips applied to corn and soybean
 - None, Low, and High manure rates
 - Residual-year corn following prior application
- Fall and spring injected manure
 - Except Clay sites where manure broadcast-incorporated next day
Methods and Demonstration Activities

- Fertilizer rate plots superimposed on each manure rate strip
 - 0, 40, 80, 120 lb N/acre (corn-soybean)
 - 0, 60, 120, 180 lb N/acre (corn-corn)
 - Blanket fertilizer applied to mask manure P and K
 - 0, 20, 40, 60 lb P$_2$O$_5$/acre
 - Blanket fertilizer applied to mask manure N and K

- Yield, routine soil tests, environmental P tests, soil nitrate, leaf greenness, cornstalk nitrate, post-harvest profile nitrate, aerial images
Pre-Application and At-Application Manure Analyses

Liquid Swine Manure Sample Analyses

Site Average Presample Minus At Application
Total N: -4.6%
Total P$_2$O$_5$: -9.1%
Total K$_2$O: 0.4%

Liquid Swine Manure Nutrient Utilization Project, Iowa State Univ., 2004
Liquid Swine Manure
Intended Rate versus Applied Rate

Analysis – Calibration – Application

Liquid Swine Manure Nutrient Utilization Project, Iowa State Univ., 2004
Intended Manure Nutrient Application Rate

Frequency Distribution
Percent of Intended Liquid Swine Manure Rate

Number of Site Applications

Percent of Intended Rate As Applied (Based on Total N or P$_2$O$_5$)

50 Applications

Liquid Swine Manure Nutrient Utilization Project, Iowa State Univ., 2004
Liquid Swine Manure Sample Analyses

Average Site Analysis, lb N, P\(_2\)O\(_5\) or K\(_2\)O/1,000 gal

- **Total N**: 53 lb total N/1000 gal
- **Total P**: 33 lb total P\(_2\)O\(_5\)/1000 gal
- **Total K**: 34 lb total K\(_2\)O/1000 gal
- **N:P\(_2\)O\(_5\) ratio**: 1.62

At-Application Manure Nutrient Analyses

- **All Site Average**
 - N: 53 lb total N/1000 gal
 - P: 33 lb total P\(_2\)O\(_5\)/1000 gal
 - K: 34 lb total K\(_2\)O/1000 gal
 - N:P\(_2\)O\(_5\) ratio: 1.62
Ammonium-N in Liquid Swine Manure

<table>
<thead>
<tr>
<th></th>
<th>Total-N</th>
<th>NH$_4$-N</th>
<th>Fraction NH$_4$-N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>6,360</td>
<td>5,267</td>
<td>83.6%</td>
</tr>
<tr>
<td>Std Dev</td>
<td>1,335</td>
<td>1,189</td>
<td>13%</td>
</tr>
<tr>
<td>n</td>
<td>97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wet Fields, No Problem

April 1 Edition, Lancaster Farming (PA)
Ahead or Behind Technology?

Elephant Powered
McCormick-Deering Archive
Corn Strip Yield Response to Liquid Swine Manure

- Yield increase could be due to N, P, K, or other component since all contained in the manure
- However, due to soil test levels, most increase expected from manure-N (Average: Low - 84 and High - 176 lb total N/acre)

<table>
<thead>
<tr>
<th>Sites</th>
<th>Manure Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>14 C-S</td>
<td>25</td>
</tr>
<tr>
<td>4 C-C</td>
<td>37</td>
</tr>
<tr>
<td>All</td>
<td>28</td>
</tr>
<tr>
<td>2000-2003</td>
<td></td>
</tr>
</tbody>
</table>
Corn Yield Response to Swine Manure and Additional Fertilizer N

<table>
<thead>
<tr>
<th>Year</th>
<th>None</th>
<th>Low Swine Manure Rate</th>
<th>High Swine Manure Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yield Inc. to N</td>
<td>ppm</td>
<td>Total N</td>
</tr>
<tr>
<td>2000</td>
<td>31</td>
<td>12</td>
<td>77</td>
</tr>
<tr>
<td>2001</td>
<td>42</td>
<td>9</td>
<td>87</td>
</tr>
<tr>
<td>2002</td>
<td>72</td>
<td>7</td>
<td>88</td>
</tr>
<tr>
<td>2000-03</td>
<td>43</td>
<td>10</td>
<td>84</td>
</tr>
</tbody>
</table>

w/out Plymouth 2000 site; 2000-2003 16 sites.
Corn Response to Liquid Swine Manure and Fertilizer N
Mean of Five C-S Sites – 2000-2001

- Yield (bu/acre)
- Relative SPAD, %
- Stalk Nitrate (ppm)

Yield

- No Manure
- 80 lb Total-N/acre
- 154 lb Total-N/acre

Relative SPAD, %

Fertilizer N Rate (lb N/acre)

Stalk Nitrate (ppm)
Soil Nitrate

Corn Yield Increase to Fertilizer N and Liquid Swine Manure Rate
2000 - 2003

Corn Yield Increase (bu/acre)

LSNT (ppm)

None
Low
High

Liquid Swine Manure Nutrient Utilization Project, Iowa State Univ., 2004
Change in Soil Nitrate

Soil Nitrate Increase with Liquid Swine Manure and Fertilizer Rate
2000 - 2003

-10 0 10 20 30 40 50 60

LSNT Increase (ppm)

Low Manure
High Manure
Fertilizer - N
Fertilizer - L
Fertilizer - H

Applied Manure or Fertilizer N
(lb N/acre)
Manure Application to Soybean

- Reasons to consider applying liquid swine manure to soybean
 - Low P and K soil tests
 - Maintain surface residue cover for soil conservation and limiting P runoff
 - Allows access to more crop land for manure application
 - Wider window for spring manure application
 - Potential to increase soybean yield even in soils with adequate P and K
<table>
<thead>
<tr>
<th>Site-Year</th>
<th>Swine Manure Application</th>
<th>Manure Total-N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
<td>Low</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td>Webster</td>
<td>42</td>
<td>44</td>
</tr>
<tr>
<td>Hardin</td>
<td>56</td>
<td>57</td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>47</td>
<td>51</td>
</tr>
<tr>
<td>Washington</td>
<td>49</td>
<td>51</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floyd</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Hamilton</td>
<td>55</td>
<td>56</td>
</tr>
<tr>
<td>Washington</td>
<td>58</td>
<td>65*</td>
</tr>
</tbody>
</table>

* Yield response to liquid swine manure significant ($P \leq 0.05$).
Liquid Swine Manure Application to Soybean Post-harvest 0-4 ft Profile Soil Nitrate

Eight Site Mean, 2000-2002

<table>
<thead>
<tr>
<th>Depth</th>
<th>Liquid Swine Manure Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td>ft</td>
<td>ppm Nitrate-N ppm</td>
</tr>
<tr>
<td>0-1</td>
<td>7</td>
</tr>
<tr>
<td>1-2</td>
<td>3</td>
</tr>
<tr>
<td>2-3</td>
<td>2</td>
</tr>
<tr>
<td>3-4</td>
<td>3</td>
</tr>
</tbody>
</table>

Profile lb/acre

- 60
- 72
- 76

Manure applied preplant either in fall or spring before soybean planting.
Residual-Year Corn Yield Increase at Seven Sites Following Swine Manure Application to Soybean

Yield Increase to Fertilizer N

<table>
<thead>
<tr>
<th>Fertilizer N Rate, lb N/acre</th>
<th>None</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>20</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>80</td>
<td>40</td>
<td>44</td>
<td>50</td>
</tr>
<tr>
<td>120</td>
<td>50</td>
<td>56</td>
<td>60</td>
</tr>
</tbody>
</table>

Leland Swine Manure Nutrient Utilization Project, Iowa State Univ., 2004
Response to Residual Liquid Swine Manure and Additional Fertilizer-N: Corn after Soybean

Mean Response -- Corn After Soybean Residual Sites

<table>
<thead>
<tr>
<th>Year</th>
<th>None</th>
<th>Low Swine Manure Rate</th>
<th>High Swine Manure Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yield Inc. to N LSNT</td>
<td>Yield Inc. to N LSNT</td>
<td>Yield Inc. to N LSNT</td>
</tr>
<tr>
<td></td>
<td>bu/acre ppm</td>
<td>lb N/acre bu/acre ppm</td>
<td>lb N/acre bu/acre ppm</td>
</tr>
<tr>
<td>2001-03</td>
<td>51 7</td>
<td>114 49 7</td>
<td>221 50 7</td>
</tr>
</tbody>
</table>

Manure Total-N applied before the prior year soybean crop; 7 sites.
Summary

- Use pre-application manure sample lab analysis and analysis history
- Calibrate application equipment
 - Consider using flow monitors and rate controllers
- Work with N, P, K application rate and not just gallons per acre
 - Know the manure nutrient analysis
- Liquid swine manure N is highly crop available
 - Use total manure N to base application rate
Summary

- Managing liquid swine manure N is similar to managing fertilizer N
 - Needed N rates
 - Effects of climatic conditions
- For soybean, limit application to total-N rate that would be applied to a corn crop following soybean
- Account for manure P and K application
- Using liquid swine manure as a reliable nutrient source takes effort, but can be done
Thank you to the many cooperators, businesses, and individuals who helped make the project a success.

- Funding from:
 - Iowa Department of Agriculture
 Division of Soil Conservation – Integrated Farm / Livestock Management Program (IFLM)
 - USDA – Iowa NRCS
 - Leopold Center for Sustainable Agriculture