Dealing with Sulfur Deficiency in Iowa Crop Production

John Sawyer, Professor
Brian Lang, Extension Field Agronomist
Daniel Barker, Assistant Scientist
Iowa State University
Plant Essential Element Sulfur (S)

- Movement in plant
 - Relatively non-mobile
- Functions
 - Proteins, chlorophyll and photosynthesis
- Deficiency symptoms
 - Yellowing/chlorosis stripping of younger leaves
 - Plant yellowing, stunting, and spindly plants with severe deficiency
- Plant available form: sulfate (SO$_4^{2-}$)
Sulfur Deficiencies

- Situations aggravating deficiency
 - Soil
 - Sandy, low organic matter, eroded, no-tillage
 - Low profile sulfate
 - Climatic
 - Cold, dry – slow mineralization of S from organic matter
 - Low atmospheric deposition
 - No application from manure/fertilizers
 - Large crop use
Past Sulfur Research on Corn and Soybean in Iowa

- Prior 40+ years (before 2005) research across Iowa (approximately 200 site-years)
 - Three times statistically significant yield increase
 - One study with multi-year average yield decrease

- Why no response to sulfur?
 - High soil organic matter
 - High subsoil sulfate
 - Atmospheric deposition
 - Manure application
 - Low S demanding crops
Things Have Changed
Observation of poor alfalfa growth in Northeast Iowa

Slide from B. Lang, ISU
Visual Response in Alfalfa to Sulfur Application
Visual Response in Alfalfa to S Application
10 kg SO$_4$/ha = 3 lb S/acre

National Atmospheric Deposition Program (NADP)
Alfalfa Response to S Application in Field Areas with Poor and Good Coloration of Alfalfa, 2005-2006

<table>
<thead>
<tr>
<th>Sulfur</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cuts 2+3 DM Yield</td>
<td>Cut 2 Plant Top S</td>
</tr>
<tr>
<td>Treatment</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>None</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Am. sulfate</td>
<td>1.18a</td>
<td>2.99b</td>
</tr>
<tr>
<td>Ca. sulfate</td>
<td>2.76b</td>
<td>3.26b</td>
</tr>
<tr>
<td></td>
<td>2.49b</td>
<td>3.21b</td>
</tr>
</tbody>
</table>

| Soil Sulfate-S (ppm) | 6.6 | 7.4 |

Three field sites in 2005, Elgin, Gunder and West Union, IA (Fayette & Downs sil soils).

Two field sites in 2006, Elgin and Gunder, IA.

Sulfur materials were applied at 40 lb S/acre after first cut in in 2005.

Treatment means followed by the same letter are not significantly different ($p \leq 0.10$).
Alfalfa Dry Matter Response to S Rate, 2006

<table>
<thead>
<tr>
<th>Sulfur rate(^1)</th>
<th>Wadena</th>
<th>Waucoma(^2)</th>
<th>Nashua</th>
<th>Waukon</th>
<th>West Union</th>
<th>Lawler</th>
</tr>
</thead>
<tbody>
<tr>
<td>lb S/acre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.32</td>
<td>1.85</td>
<td>6.73</td>
<td>1.39</td>
<td>0.78</td>
<td>2.14</td>
</tr>
<tr>
<td>15</td>
<td>2.59</td>
<td>3.06</td>
<td>6.98</td>
<td>2.97</td>
<td>1.05</td>
<td>2.11</td>
</tr>
<tr>
<td>30</td>
<td>2.76</td>
<td>3.14</td>
<td>6.85</td>
<td>3.33</td>
<td>1.07</td>
<td>2.11</td>
</tr>
<tr>
<td>45</td>
<td>2.92</td>
<td>3.24</td>
<td>7.14</td>
<td>3.58</td>
<td>1.07</td>
<td>2.07</td>
</tr>
<tr>
<td>Significant (90%)</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>*</td>
<td>*</td>
<td>NS</td>
</tr>
<tr>
<td>Max rate, lb S/ac</td>
<td>25</td>
<td>22</td>
<td>0</td>
<td>29</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Cut harvested</td>
<td>2+3</td>
<td>2+3</td>
<td>1+2+3+4</td>
<td>2+3</td>
<td>3</td>
<td>2+4</td>
</tr>
</tbody>
</table>

\(^1\) Sulfur applied as calcium sulfate in April at Nashua and May at other sites.

\(^2\) Waucoma site had 10 lb/ac elemental S applied in spring across the entire field.
Alfalfa Plant S Concentration Response, 2006

<table>
<thead>
<tr>
<th>Sulfur rate<sup>1</sup></th>
<th>Wadena</th>
<th>Waucoma<sup>2</sup></th>
<th>Nashua</th>
<th>Waukon</th>
<th>West Union</th>
<th>Lawler</th>
</tr>
</thead>
<tbody>
<tr>
<td>lb S/acre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.14</td>
<td>0.21</td>
<td>0.33</td>
<td>0.18</td>
<td>0.18</td>
<td>0.27</td>
</tr>
<tr>
<td>15</td>
<td>0.20</td>
<td>0.30</td>
<td>0.35</td>
<td>0.29</td>
<td>0.24</td>
<td>0.36</td>
</tr>
<tr>
<td>30</td>
<td>0.30</td>
<td>0.43</td>
<td>0.34</td>
<td>0.40</td>
<td>0.29</td>
<td>0.39</td>
</tr>
<tr>
<td>45</td>
<td>0.39</td>
<td>0.36</td>
<td>0.37</td>
<td>0.41</td>
<td>0.28</td>
<td>0.37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil S, ppm<sup>4</sup></th>
<th>7</th>
<th>3</th>
<th>7</th>
<th>1</th>
<th>6</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil OM, %<sup>4</sup></td>
<td>3.1</td>
<td>2.1</td>
<td>4.2</td>
<td>3.8</td>
<td>3.3</td>
<td>2.6</td>
</tr>
<tr>
<td>Soil type</td>
<td>Fayette silt loam</td>
<td>Wapsie loam</td>
<td>Clyde-Floyd loam</td>
<td>Fayette silt loam</td>
<td>Fayette silt loam</td>
<td>Ostrander loam</td>
</tr>
</tbody>
</table>

1. Sulfur applied as calcium sulfate in April at Nashua and May at other sites.
2. Waucoma site had 10 lb/ac elemental S applied in spring across the entire field.
3. Sulfur concentration (%S) for 6-inch plant tops collected before second cut.
4. Soil samples collected in check plots after first cut, 0 to 6 inch depth.
Alfalfa Yield Increase to Applied S vs. Plant S Concentration (six-inch plant top)

Yield Increase per Cut (%) vs. Plant Analysis (% S)

- $R^2 = 0.52$, $p = 0.006$
- Linear-Plateau joins at 0.23% S
2010-2011 Alfalfa Sulfur Trial
Nashua Research Farm

<table>
<thead>
<tr>
<th>Trt</th>
<th>Forage Yield</th>
<th>Soil S Test</th>
<th>Plant Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>None</td>
<td>6.15a</td>
<td>6.44a</td>
<td>6.30a</td>
</tr>
<tr>
<td>B</td>
<td>6.10a</td>
<td>6.68a</td>
<td>6.39a</td>
</tr>
<tr>
<td>S</td>
<td>6.91b</td>
<td>7.85b</td>
<td>7.38b</td>
</tr>
<tr>
<td>B + S</td>
<td>6.67ab</td>
<td>8.07b</td>
<td>7.37b</td>
</tr>
</tbody>
</table>

Means followed by the same letter are not different, $p \leq 0.05$.
S applied at 40 lb S/acre as gypsum (calcium sulfate).
B applied at 2 lb B/acre as Borate-48.
Fertilizers applied for each year.
Readlyn loam, 3.3% organic matter.
Three harvests in 2010 and four harvests in 2011.

B. Lang and K. Pecinovsky, ISU
Things Have Changed
Things Have Changed
Visual Response in Corn to Sulfur Application
Sulfur Fertilizer Trials on Corn in Problem Field Areas, Northeast Iowa, 2006

<table>
<thead>
<tr>
<th>Location</th>
<th>Soil type</th>
<th>Sulfur</th>
<th>Yield</th>
<th>Moisture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>bu/acre</td>
<td>%</td>
</tr>
<tr>
<td>Lamont 1</td>
<td>Sparta lfs</td>
<td>No</td>
<td>123 a</td>
<td>24.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>151 b</td>
<td>22.6</td>
</tr>
<tr>
<td>Lamont 2</td>
<td>Sparta lfs</td>
<td>No</td>
<td>154 a</td>
<td>22.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>198 b</td>
<td>18.8</td>
</tr>
<tr>
<td>Thorpe 1</td>
<td>Chelsa lfs</td>
<td>No</td>
<td>88 a</td>
<td>14.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>108 b</td>
<td>13.5</td>
</tr>
<tr>
<td>Thorpe 2</td>
<td>Kenyon l</td>
<td>No</td>
<td>196 a</td>
<td>19.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>204 a</td>
<td>19.3</td>
</tr>
<tr>
<td>Waukon</td>
<td>Fayette sl</td>
<td>No</td>
<td>96 a</td>
<td>- -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>172 b</td>
<td>- -</td>
</tr>
<tr>
<td>Waterville</td>
<td>Fayette sl</td>
<td>No</td>
<td>118 a</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>171 b</td>
<td>30.7</td>
</tr>
</tbody>
</table>

Sulfur applied as calcium sulfate at 40 lb S/acre.
Forty-Seven Corn S Rate Sites in 2007-2009
North Central – Northeast Iowa

❖ Sulfur (gypsum) at 0, 10, 20 and 40 lb S/acre
❖ 2007
 ➢ 17 of 20 sites responded to S application
 • 18 bu/acre average yield increase across all sites
❖ 2008
 ➢ 11 of 25 sites responded to S application
 • 7 bu/acre average yield increase across all sites
❖ 2009
 ➢ 2 sites with no response to S application
Twenty-Eight Responsive S Rate Sites
2007-2009 North Central - Northeast Iowa
Soils: 21 fine texture (cl, sicl, sil, l); 7 coarse texture (fsl, lfs, sl)

Sulfur Rate, lb S/acre
Corn Yield, bu/acre

<table>
<thead>
<tr>
<th>Sulfur Rate, lb S/acre</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn Yield, bu/acre</td>
<td>120</td>
<td>140</td>
<td>160</td>
<td>180</td>
<td>200</td>
</tr>
</tbody>
</table>

Maximum Response Rate
- Fine-Textured: 16.9 lb S/acre, 188.7 bu/acre
- Coarse-Textured: 24.8 lb S/acre, 181.2 bu/acre

Economic Optimum Rate
- Fine-Textured: 15.7 lb S/acre, 188.6 bu/acre
- Coarse-Textured: 23.4 lb S/acre, 181.1 bu/acre

0.125 price ratio ($0.50/lb S and $4.00/bu corn)
Phosphorus, Sulfur, and Zinc Product Evaluation

- Two sites in northeast Iowa
 - 2006
 - Simplot 13-33-0-15S (SEF)

- Five sites in central to north-central Iowa
 - 2008 – 2010
 - Mosaic 13-33-0-15S (MES15)
 - Mosaic 12-40-0-10S (MES10)

- Compared to AMS and MAP

- Sulfur applied at 10 and 30 lb S/acre
 - N and P equalized at rate with highest S rate
Phosphorus and Sulfur Product Evaluation

- Sulfur response at 2006 sites

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Ear Leaf S</th>
<th>Grain Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>bu/acre</td>
</tr>
<tr>
<td>S-CON</td>
<td>0.15a</td>
<td>196a</td>
</tr>
<tr>
<td>SEF-10</td>
<td>0.18b</td>
<td>211b</td>
</tr>
<tr>
<td>AMS-10</td>
<td>0.18b</td>
<td>211b</td>
</tr>
</tbody>
</table>

Mean response across both sites, 2006.

- No S yield response at 2008 – 2010 sites
 - Leaf S concentration increased with all products
Phosphorus and Sulfur Product Evaluation Across Seven Sites

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Ear Leaf S</th>
<th>Ear Leaf P</th>
<th>Grain Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-CON</td>
<td>0.14d</td>
<td>0.24b</td>
<td>194b</td>
</tr>
<tr>
<td>S-CON</td>
<td>0.15c</td>
<td>0.28a</td>
<td>209a</td>
</tr>
<tr>
<td>MES/SEF-10</td>
<td>0.17b</td>
<td>0.28a</td>
<td>213a</td>
</tr>
<tr>
<td>AMS-10</td>
<td>0.16b</td>
<td>0.28a</td>
<td>211a</td>
</tr>
<tr>
<td>MES/SEF-30</td>
<td>0.19a</td>
<td>0.28a</td>
<td>208a</td>
</tr>
<tr>
<td>AMS-30</td>
<td>0.18a</td>
<td>0.28a</td>
<td>212a</td>
</tr>
<tr>
<td>MAP-30</td>
<td>0.18a</td>
<td>0.28a</td>
<td>212a</td>
</tr>
</tbody>
</table>

Mean response across all seven sites, 2006-2010. Letters indicate significant difference at \(p=0.05 \).
Six of Eleven Sulfur Strip Trials in Northeast and Central Iowa Responsive, 2009

<table>
<thead>
<tr>
<th>Site</th>
<th>County</th>
<th>Crop</th>
<th>Sulfur Rate</th>
<th>Corn Yield - S</th>
<th>Corn Yield + S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>lb S/acre</td>
<td>bu/acre</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Greene</td>
<td>corn</td>
<td>40</td>
<td>225</td>
<td>229</td>
</tr>
<tr>
<td>4</td>
<td>Greene</td>
<td>corn</td>
<td>40</td>
<td>210</td>
<td>215†</td>
</tr>
<tr>
<td>5</td>
<td>Greene</td>
<td>corn</td>
<td>40</td>
<td>217</td>
<td>228†</td>
</tr>
<tr>
<td>6</td>
<td>Dallas</td>
<td>soybean</td>
<td>40</td>
<td>201</td>
<td>200</td>
</tr>
<tr>
<td>9</td>
<td>Dallas</td>
<td>corn</td>
<td>40</td>
<td>147</td>
<td>152†</td>
</tr>
<tr>
<td>10</td>
<td>Dallas</td>
<td>corn</td>
<td>40</td>
<td>135</td>
<td>134</td>
</tr>
<tr>
<td>1</td>
<td>Fayette</td>
<td>soybean</td>
<td>15</td>
<td>224</td>
<td>236†</td>
</tr>
<tr>
<td>2</td>
<td>Howard</td>
<td>soybean</td>
<td>20</td>
<td>186</td>
<td>192†</td>
</tr>
<tr>
<td>7</td>
<td>Dubuque</td>
<td>soybean</td>
<td>30</td>
<td>216</td>
<td>229†</td>
</tr>
<tr>
<td>8</td>
<td>Floyd</td>
<td>---</td>
<td>20</td>
<td>199</td>
<td>203</td>
</tr>
<tr>
<td>11</td>
<td>Winneshiek</td>
<td>soybean</td>
<td>30</td>
<td>215</td>
<td>212</td>
</tr>
</tbody>
</table>
Extractable Soil Sulfate-S

Yield Response to 40 lb S/acre

Yield Increase (bu/acre)

Extractable Soil Sulfate-S (ppm)

2007-2009 Sites

2000 Sites
Corn Ear Leaf S Concentration

Yield Response to 40 lb S/acre

Yield Increase (bu/acre)

Corn Ear Leaf S in Control (% S)

- 2007-2009 Sites
- 2000 Sites
Soil Organic Matter

Yield Response to 40 lb S/acre

Yield Increase (bu/acre)

Soil Organic Matter (%)

-30
-20
-10
0
10
20
30
40
50
60
012345678

2007-2009 Sites
2000 Sites

IOWA STATE UNIVERSITY
University Extension
Soil Organic Matter

Yield Response to 40 lb S/acre

Yield Increase (bu/acre) vs. Soil Organic Matter (%)

- 2007-2009 Sites: N=3
- 2000 Sites: N=6

21% error

Iowa State University
University Extension
76 bu/acre Response
Site WK 2006
Alfalfa Previous Crop
Fayette sil

42 bu/acre Response
Site D 2007
Soybean Previous Crop
Sparta lfs

20 bu/acre Response
Site T1 2006
Soybean Previous Crop
Chelsa lfs
Zero bu/acre Response
Site Mason City 2008
Soybean Previous Crop
Readlyn loam

Zero bu/acre Response
Ames Site 2001
Soybean Previous Crop
Clarion loam

No Response or Small Response
Early Season Sulfur Deficiency Symptoms Can Disappear

2011 Continuous Corn
10 replicated strips
+/- 12.2 lb S/acre as ammonium thiosulfate, incorp.
No S: 217 bu/acre
With S: 216 bu/acre

Doug Johnson; Central IA; Picture 6/7/2011
Early Season Sulfur Deficiency Symptoms Can Disappear

2011 Soybean-Corn
0, 5, 10, 20, 40 lb S/acre as gypsum
“High OM” site: 5.8%; “Low OM” site: 4.1%

<table>
<thead>
<tr>
<th>lb S/acre</th>
<th>High OM</th>
<th>Low OM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>192</td>
<td>187</td>
</tr>
<tr>
<td>5</td>
<td>184</td>
<td>188</td>
</tr>
<tr>
<td>10</td>
<td>190</td>
<td>187</td>
</tr>
<tr>
<td>20</td>
<td>191</td>
<td>191</td>
</tr>
<tr>
<td>40</td>
<td>187</td>
<td>183</td>
</tr>
<tr>
<td>FLSD<sub>0.10</sub></td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

Dave Rueber
ISU Northern Farm, Kanawha

2011/06/10
Soybean Sulfur Trials

- **2000-2001**
 - Six S rate trials each year across Iowa
 - No yield response

- **2008**
 - Two S rate trials in central-northeast Iowa
 - Yield increase at the northeast Iowa site

- **2011**
 - One S rate trial on a sandy soil in southeast Iowa
 - No yield response
Summary

- Sulfur deficiencies an issue in Iowa (esp. northeast)
 - 60% corn S rate sites responsive to S application
 - Especially coarse textured, sideslope landscape, low organic matter, eroded soils, no-tillage, reduced-tillage, alfalfa prior crop, no manure application, no S applied in fertilizers
 - 68% sites responsive with l, sil, fsl, lfs, sl soils
 - 14% sites responsive with sicl, cl soils
 - For responsive sites, 19 bu/acre yield increase

- Not as likely in rest of state (fine textured - higher organic matter soils)?
Summary

- **Sulfur application rate when needed**
 - Alfalfa: topdress 20 to 30 lb S/acre
 - Corn: 15 lb S/acre fine textured soils
 - 25 lb S/acre coarse textured soils

- **Tools to indicate S deficiency**
 - Alfalfa – top six-inch plant growth at early bud
 - Corn – ?? needs more investigation
 - Visual coloration and growth response
Research Support

- Honeywell International, Inc.
- J.R. Simplot Company
- Mosaic Fertilizer, LLC
- Foundation for Agronomic Research
- Calcium Products, Inc.
- Iowa State University Extension