Cation Exchange

Cation Exchange Capacity (CEC) Base Saturation Ca:Mg Ratio

John E. Sawyer Professor Soil Fertility Extension Specialist Iowa State University

What is a Cation and Cation Exchange?

Cation

Positively charged ion

Ca²⁺, Mg²⁺, K⁺, NH₄⁺, Na⁺, Zn²⁺, Mn²⁺, H⁺, Al³⁺

Exchange

> Trading of one cation for another

- Soil colloid ↔ soil solution
- Soil colloid or soil solution ↔ plant root

What is Cation Exchange (cont.)?

Cation adsorption strength

- Cations are held with different strengths on the soil exchange sites
- More strongly held cations accumulate as soils weather over a long time period

$$AI^{3+} > H^+ > Ca^{2+} > Mg^{2+} > K^+ = NH_4^+ > Na^+$$

Acidic Cations" "Basic Cations"

IOWA STATE UNIVERSITY Extension and Outreach

"

What is Cation Exchange Capacity (CEC)?

- The total number of exchangeable cations a soil can hold
 - Source of CEC
 - Negative sites on clay and organic matter
 - Sand and silt do not contribute negative sites
 - > Amount of CEC
 - Varies by amount and type of clay and organic matter
 - > Importance
 - Holds plant essential cation nutrients available in soil

What is Cation Exchange Capacity (CEC)?

Extension and Outreach

CEC can give general clues to soil properties

- Soils with low CEC
 - High sand content
 - Low organic matter
 - Less lime needed to change pH
 - Leaching of N more likely
 - Low water holding capacity

Soils with high CEC

- > High clay or organic matter
- More lime needed to change pH
- Greater capacity to hold nutrients
- High water holding capacity

Approximate CEC of various soil textures

Soil Texture
sandy loams
silt loams & loams
silty clays/clay loams
organic soils

Light Color
< 8
8 - 15
15 - 25

<u>Dark Color</u> 8 - 15 15 - 25 25 - 40 50 - 100

CEC allows soil to act as a buffer

- > Buffer means resistance to change
- > Helps us manage crop nutrients
 - Large cation nutrient storage
 - Slow drawdown of nutrients by crops
 - Allows management flexibility and crop safety
- > However, at same time
 - Large amounts of lime and fertilizers needed to change pH and soil test levels

"Classic" laboratory measurement

- Saturation with ammonium
- > Expensive and time consuming

Laboratory estimation

- Summation of exchangeable cations
 - Determined from ammonium acetate or Mehlich-3 extraction and soil buffer pH_b
 - Less expensive and quick

Problem with CEC Estimation

An estimate only

- > Not direct measurement
- Ca⁺² from free CaCO₃ in calcareous soils inflates CEC value when Ca is extracted with neutral ammonium acetate or Mehlich-3 extractants

Estimate of CEC

- Summation of exchangeable bases and exchangeable acidity
 - > Exchangeable bases from cation determination
 - K⁺ meq/100g = (ppm K) ÷ 390
 - Ca⁺⁺ meq/100g = (ppm Ca) ÷ 200
 - Mg⁺⁺ meq/100g = (ppm Mg) ÷ 120
 - Na⁺ meq/100g = (ppm Na) ÷ 230
 - > Exchangeable Acidity Estimated from Buffer pH
 - meq acidity/100g = 12 x (7.0 pH_b)

Estimate of CEC

Example CEC Summation Calculation

- 120 ppm K ÷ 390
- 975 ppm Ca ÷ 200
- 210 ppm Mg ÷ 120
- (7.0 6.8 pH_b) x 12 CEC

- = 0.31 meq K/100g
- = 4.88 meq Ca/100g
- = 1.75 meq Mg/100g
- = 2.40 meq H/100g
- = 9.34 meq /100g

Base Saturation

Definition

Percentage of total CEC occupied by basic cations
 Ca²⁺, Mg²⁺, K⁺, NH₄⁺, Na⁺, Zn²⁺

Soil pH is generally related to % base saturation

IOWA STATE UNIVERSITY Extension and Outreach

Example Base Saturation Calculation

Base Saturation = (total meq of cation bases \div CEC) x 100 $\frac{(K + Mg + Ca)}{CEC} \times 100$ Example: meg Ca = 4.88

Example: m

meq Ca =
$$4.88$$

meq Mg = 1.75
meq K = 0.31
meq H = 2.40
CEC = 9.34

Base Saturation = (4.88 + 1.75 + 0.31) x 100 = 74% 9.34

IOWA STATE UNIVERSITY Extension and Outreach

Example Cation Saturation Calculation

Cation Saturation = (meq of cation \div CEC) x 100

Example:

- meq Ca = 4.88
- meq Mg = 1.75
- meq K = 0.31
- $\underline{\text{meq H}} = 2.40$
 - CEC = 9.34

 $\frac{\text{Cation Saturation}}{(4.88/9.34) \times 100 = 52\%}$ $(1.75/9.34) \times 100 = 19\%$ $(0.31/9.34) \times 100 = 3\%$ $(2.40/9.34) \times 100 = 26\%$

Base Cation Saturation for Formulating Fertilizer Recommendations???

- Basic Cation Saturation Ratio (BCSR)
 - > Theory
 - Maximum yields achieved by creating an ideal ratio of Ca, Mg, and K
 - Originated in New Jersey (Bear et al., 1945)
 - Eight years of work with alfalfa on acidic soils with lime amendment
 - Modified by Graham (Missouri, 1959) into ranges (no research data, interpretation only)

Problems with BCSR Concept!

- Research database for support is lacking
- Research shows that optimum yield occurs outside of ideal range, that is, no "ideal range" or "ideal saturation level"
- Often generates recommendations that are prohibitively expensive and not justified by agronomic research
- No justification to alter Ca:Mg ratios
 - IF there is a deficiency of Ca or Mg, apply nutrient to correct deficiency rather than altering ratio

BCSR Compared To Soil Test K Interpretation

	Optimum	Base Saturation Concept		
CEC	Concept	2 %	3%	5%
meq/100g		ppm S	STK	
3	161-200	24	35	59
6	161-200	47	70	117
12	161-200	94	140	234
18	161-200	130	210	351
24	161-200	188	280	468
30	161-200	235	350	585

Ca:Mg Ratio Calculation

Cation Ratio = meq cation A ÷ meq cation B Example:

Cation Ratio

- meq Ca = 4.88
- meq Mg = 1.72
- meq K = 0.31
- meq H = 2.40
 - CEC = 9.31

Ca:Mg = $(4.88 \div 1.72) = 2.8:1$

IOWA STATE UNIVERSITY Extension and Outreach

Relationship Between Soil Ca:Mg Ratio and Crop Yield

 Ca:Mg ratio range where greenhouse and field research has shown no detrimental yield effects

0.5 Ca: 1 Mg to 50 Ca: 1 Mg

(2 times more Mg to 50 times more Ca) (on a meq basis)

Typical Ca:Mg Ratio of Iowa Surface Soils

Soil Type	рΗ	CEC	Ca	Mg	K	Ca:Mg Ratio
	meq/100g					
Primghar	5.8	32.7	22.4	7.4	0.5	3.0
Sac	6.0	29.8	20.6	5.5	0.6	3.7
Kenyon	5.9	14.0	8.5	2.6	0.2	3.3
Dinsdale	5.9	20.5	14.6	4.2	0.4	3.5
Muscatine	6.1	28.3	20.4	7.1	0.4	2.9
Napier	6.6	27.6	23.5	3.2	0.6	7.3

Magnesium is not "bad" for a soil

- Essential element
- Mg⁺⁺ divalent
 cation that helps
 with soil structure

Effect of broadcast potash and sulpomag					
on corn yield, Webster soil.					
Year	Control KCI KMgSO ₄				
	bu/acre				
1967	146	160	161		
1968	148	161	160		
1969	144	139	144		
1970	108	130	124		
1971	147	157	160		
1972	129	150	152		
1973	115	129	129		
1974	120	133	130		
8-yr avg.	132	145	145		
Fertilizers applied at 160 lb K/acre annually					
Sul-po-mag supplied 199 lb S/acre annually					
J. Webb, 1978.					

KMgSO₄ supplied 98 lb Mg/acre annually and 784 lb Mg/acre across 8 years

This institution is an equal opportunity provider. For the full non-discrimination statement or accommodation inquiries, go to <u>www.extension.iastate.edu/diversity/ext</u>.

