

John Sawyer Professor Department of Agronomy Iowa State University

> IOWA STATE UNIVERSITY Extension and Outreach

Gypsum Application

◆ Calcium Sulfate
 > CaSO₄ • 2H₂O
 ■ 16% S
 ■ 22% Ca

When gypsum added to soil
 CaSO₄ • 2H₂O = Ca⁺⁺ + SO₄⁼ + 2H₂O
 Does not increase or decrease soil pH

Gypsum Used to Aid in Reclamation of Saline-Sodic and Sodic Soils

Saline-Sodic Soils Soil structure is not dispersed Conductivity > 4 mmhos/cm > > 15% exchangeable sodium ▷ pH < 8.5</p> Sodic soils Soil structure is dispersed Conductivity < 4 mmhos/cm</p> > > 15% exchangeable sodium <u>> pH > 8.5</u>

Why Apply Gypsum to Iowa Soils?

Soil Structure (soil aggregation) is influenced by:

Why Apply Gypsum to Iowa Soils?

Iowa Soils have:

- > High organic matter
- > High (adequate) calcium and magnesium content for soil structure and plant growth
- Low sodium
- Calcareous soils have soil exchange complex saturated with calcium/magnesium and have free lime and sometimes free gypsum

Exchangeable Cations of Several Iowa Surface Soils

Soil Type	рΗ	CEC	Ca	Mg	Κ
		meq/100g	lb excl	nangeable	e/acre
Kenyon	5.9	14.0	3400	624	156
Readlyn	6.3	19.5	5800	1008	156
Klinger	5.8	26.2	8000	1248	156
Dinsdale	5.9	20.5	5840	1008	312
Tama	5.7	20.6	5560	816	390
Muscatine	6.1	28.3	8160	1704	312

Relationship Between Soil Ca:Mg Ratio and Yield

Ca:Mg ratio range where greenhouse and field research has shown yield is optimal

0.5 Ca: 1 Mg to 50 Ca: 1 Mg

(2 times more Mg to 50 times more Ca) (on a meq basis)

Exchangeable Cations of Several Iowa Surface Soils

Soil Type	рН	CEC	Са	Mg	K	Ca:Mg Ratio
			· - meq/	100g -		
Primghar	5.8	32.7	22.4	7.4	0.5	3.0
Sac	6.0	29.8	20.6	5.5	0.6	3.7
Kenyon	5.9	14.0	8.5	2.6	0.2	3.3
Dinsdale	5.9	20.5	14.6	4.2	0.4	3.5
Muscatine	6.1	28.3	20.4	7.1	0.4	2.9
Napier	6.6	27.6	23.5	3.2	0.6	7.3

Ranges in Soil Basic Cation Ratios for Five Highest and Lowest Yields

		Range in Ca:Mg Ratios				
Ratio	Yield Level	Corn (75)	Corn (75)	Soybean (77)	Soybean (78)	
Ca:Mg	Highest Five	5.7 - 26.8	5.7 - 14.3	5.7 - 14.0	5.7 - 26.8	
Ca:Mg	Lowest Five	5.8 - 21.5	5.0 - 16.1	2.3 - 16.1	6.8 - 21.5	

McLean et al., 1983; Ohio State Univ.

Ca and Mg Crop Uptake

- Amount of uptake is selected by roots, not soil ratio
- With water use by crops (transpiration)
 - Amount of Ca and Mg supplied to root surface is greater than the amount taken up by crops
 - 250 to 400 lb Ca and 100 to 160 lb Mg moves to root surface
 - 150 bu/acre corn uptake of 26 to 40 lb Ca/acre and 15 to 30 lb Mg/acre

Application of Flue-Gas Scrubber Desulfurization Sludge (Gypsum)

Wynoose silt loam (F. Thicke, Ph.D. Thesis, 1988, Univ. Illinois)

Product Rate	3-yr Corn	4-yr Soybean	Soil pH 3 yr	ex. Ca 1 yr	ex. Mg 1 yr	1 yr Bulk Density	
lb/acre	bu/acre	bu/acre		ppm	ppm	g/cm ³	
0	159	36	6.8	1608	407	1.42	
1,000	159	38	6.9	1615	371	1.41	
10,000	156	36	6.8	1705	368	1.45	
50,000	142	35	6.7	2110	330	1.38	
100,000	145	33	6.9	3960	294	1.39	
Stats:	S	S	NS	S	S	NS	
Material applied spring 1984, moldboard plow incorporation. Newton, Il							

Corn Yield Response to Sulfur & Magnesium Fertilization, Northwest Research Farm, 1995 – 1999

Treatment	S	K ₂ O	MgO	5-year Mean
		Ib/acre		bu/acre
Sulpomag	60	60	30	138
KCI + S	60	<mark>60</mark>		138
Elemental S	60			138
KCI		60		135
FLSD(0.05)				NS

A.P. Mallarino et al., 1999 ISRF99-29.31.

Fertilizers spring incorporated each year before corn.

1999 0-6 inch SO₄-S: 5-8 ppm with K only; 30-46 ppm average with applied S.

Alfalfa Response to S Application in Field Areas with Poor and Good Coloration of Alfalfa, 2005-2006

	2005				20	06	
	Cuts	2+3	Cut	2	Cı	ıt 1	
Sulfur	DM Yield		Plant Top S		DM	DM Yield	
		0	bserved	Growth A	rea		
Treatment	Poor	Good	Poor	Good	Poor	Good	
	ton/	acre	%	S	ton/	acre	
None	1.18a	2.99b	0.14a	0.22b	1.10a	2.04b	
Am. sulfate	2.76b	3.26b	0.40d	0.35c	2.18b	2.22b	
Ca. sulfate	2.49b	3.21b	0.41d	0.37c	2.14b	2.19b	
	6.6	7.4 S	oil Sulfa	te-S (ppm)		

Three field sites in 2005, Elgin, Gunder and West Union, IA (Fayette & Downs sil soils). Two field sites in 2006, Elgin and Gunder, IA.

Sulfur materials were applied at 40 lb S/acre after first cut in in 2005.

Treatment means followed by the same letter are not significantly different ($p \le 0.10$).

Twenty-Eight Responsive S Rate Sites 2007-2008 North Central - Northeast Iowa

Soils: 21 fine texture (cl, sicl, sil, l); 7 coarse texture (fsl, lfs, sl)

Effect of Broadcast Potash and Sulpomag on Corn Yield, Webster Soil

Year	Control	KCI	KMgSO ₄			
		- bu/acre				
1967	146	160	161			
1968	148	161	160			
1969	144	139	144			
1970	108	130	124			
1971	147	157	160			
1972	129	150	152			
1973	115	129	129			
1974	120	133	130			
8-yr avg.	132	145	145			
Fertilizers applied at 160 lb K/acre annually						

Sul-po-mag supplied 98 lb Mg/acre annually

Fertilizers applied at 160 lb K/acre annually Sul-po-mag supplied 199 lb S/acre annually J. Webb, 1978.

Managing Ca and Mg on Iowa Soils

Critical soil test level (sufficiency)

- No Ca or Mg soil test interpretation for Iowa soils
- Neither generally deficiency in Iowa soils
 May be Mg K NH₄ grass tetany concern in some soils

Ca and Mg are managed by limestone application from local quarry to acidic soils

NCR Publication 533 Soil Cation Ratios for Crop Production

University Exter

ISU Extension and Outreach Store https://store.extension.iastate.edu/