Nitrogen Management for Corn Production

John E. Sawyer Professor Soil Fertility Extension Specialist Department of Agronomy

> IOWA STATE UNIVERSITY Extension and Outreach

Four Factors Influencing Optimum Time of Application

- Crop to be grown
 - Timing of N uptake
- Climate: Temperature <> Precipitation

Excess water – Nitrate loss

• Soil texture -- drainage

Leaching / Saturation / Denitrification

Nitrogen product - chemical formulation
 Ammonium vs. Nitrate vs. Urea

Impact of Nitrogen Application Timing on Corn Yield

									Split	Split	
Year	Fall	4/1	4/15	5/1	5/15	6/1	6/15	7/1	E.	L.	CK
						bu/a	cre				
1989	151	144	149	151	151	138	131	128	143	142	59
(Dry)											
1990	114	126	128	128	140	145	143	137	130	136	68
(Wet)											
N applied at 112 lb N/acre as liquid fertilizer. Split early was at first											

N applied at 112 lb N/acre as liquid fertilizer. Split early was at first cultivation, split late was at second cultivation (half – half rate split). Continuous corn. Baker et al., 1995, Ames, IA.

Fall Nitrogen Application for Corn Production

- Relatively good in Corn Belt?
 - Medium to fine textured soils
 - Soils not conducive to leaching/denitrification
 - On average -- 85 to 90% as effective as Spring applied N
 - Fall and late spring early summer moisture
- Application after 4 inch soil temperature 50 °F and cooling (colder the better)
- Only anhydrous ammonia
- Consider nitrification inhibitor

Effect of Time of N Application and N-Serve on Corn Yields after Soybean from 1987–2001 at Waseca, MN

	Tii	Time of N Application			
Parameter	Fall	Fall+N-Serve	Spring		
15-Yr Avg. Yield (bu/A)	144	153	156		
15-Yr Avg. FW NO ₃ -N Conc. (mg/L)	14.1	12.2	12.0		
7-Yr Avg. Yield (bu/A) **	131	146	158		
** Seven years when statistically significant differences occurred.					

Gyles Randall, Univ. Minnesota

Fall Urea Application

Northern Research Farm, 2007-2010					
	N rate applied to corn, lb N/acre				
Crop	0	80	160	240	
	bu/acre				
Corn, sp urea	59	126	158	186	
Corn, fall urea	62	99	151	165	
Continuous corn. Mallarino and Rueber, 2010.					

Corn response to N timing in Iowa, Minnesota, and Wisconsin (1987-1992)

	Location (site-years)				
	Iowa	Minnesota	Wisconsin		
Sites	(1987-1991)	(1989-1992)	(1988-1992)		
Total	65	32	39		
Responsive	25	28	20		
PP = SD/Splt.	15	16	17		
PP > SD/Splt.	8	4	3		
PP < SD/Splt.	2	8	0		

Killorn, IA; Randall, MN; Bundy, WI.

L.G. Bundy, Univ. of Wisconsin

IOWA STATE UNIVERSITY Extension and Outreach

Spring Preplant vs. Spring-Sidedress Three Application Split in Iowa

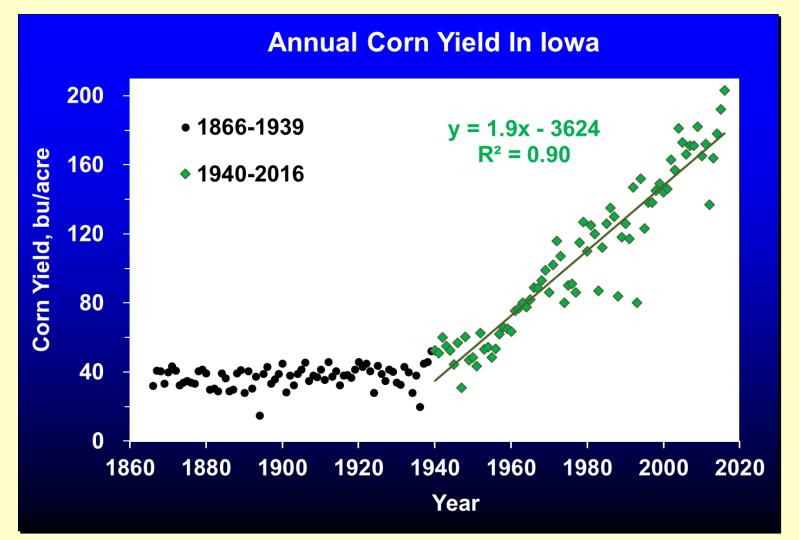
Across Five Years (1987-1991)
 Two of three dry springs: preplant > split
 One dry spring: no difference
 Two wet springs: split > preplant

From Baker et al., 1995. Iowa State University. Average of liquid N (0 to 180 lb N/acre) point injected with and without N-Serve, Ames IA. Continuous corn.

Preplant or At-Planting and Split/Sidedress

		Mean	EONR	Mean Y	EONR
Category	Sites	Pre	Split	Pre	Split
		Ib N/	acre	bu/a	icre
Split EONR at least 10 lb N/acre lower than Preplant	4	167	138	202	201
Preplant EONR at least 10 lb N/acre lower than Split	3	108	126	203	206
Preplant and Split EONR within 10 lb N/acre	7	151	147	221	221
Overall Mean	14	146	140	212	212
Chariton (2015)	1	250*	250*	134	129
Based on N response equations and 0.10 N:corn price ratio.					

Based on N response equations and 0.10 N:corn price ratio. Sawyer, Lundvall, Hall, and Barker, 2014-2016.


Recommended Timing of Nitrogen Applications for Corn

Soil Fall Preplant Sid	earess
Medium/FineTextureOK*Well-Drained	OK
Medium/FineTextureNoOKOpPoorly Drained	timum
Coarse texture No No Op	timum

*Includes use of BMPs for fall-applied N.

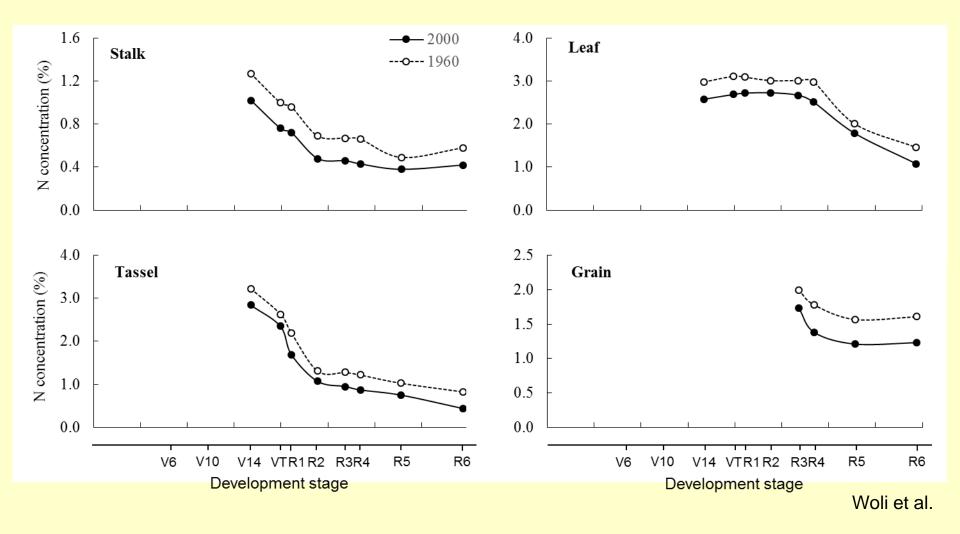
L.G. Bundy, Univ. of Wisconsin

Has Nitrogen Fertilization Requirement Increased Like Corn Yield?

IOWA STATE UNIVERSITY Extension and Outreach Data Source: USDA-NASS

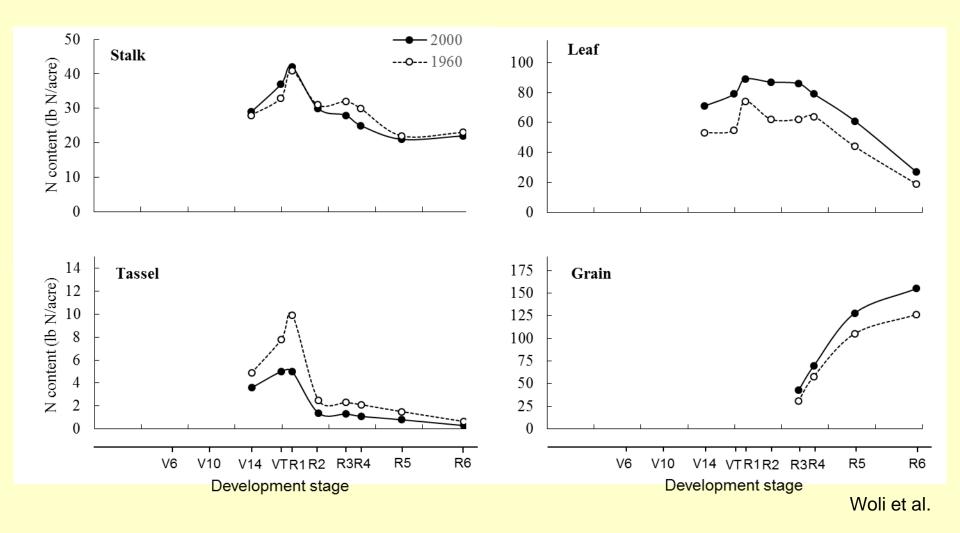
Why Are Nitrogen Rate Guidelines Similar Across Many Years and Corn Yield Gains?

		Suggested N Rate Range
Reference (year)	Rotation	Low – High
		lb N/acre
DM 005 (1070)	Soybean-Corn	100 – 150
PM-905 (1979)	Corn-Corn	150 – 200
CNRC (2018)	Soybean-Corn	126 – 152
	Corn-Corn	175 – 203

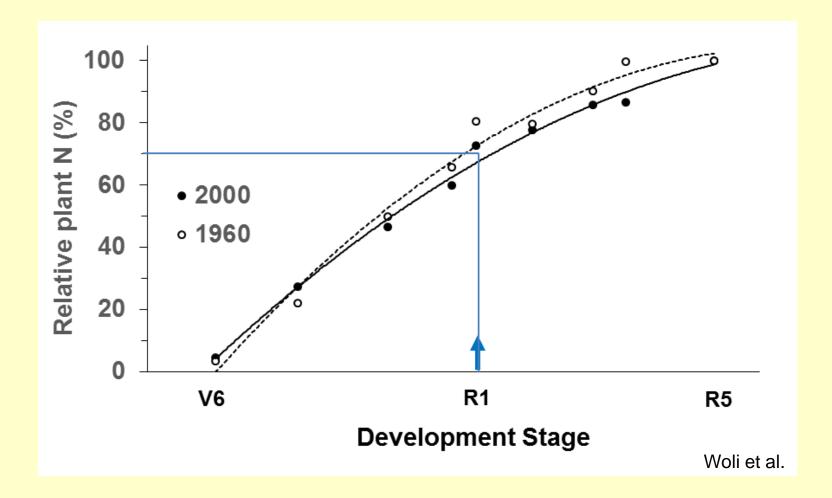

PM-905 Crop Rotations, Effect on Yields and Response to Nitrogen, 1979 Corn Nitrogen Rate Calculator (CNRC), 2018

Corn Era Comparison: 1960 vs. 2000 What's Changed?

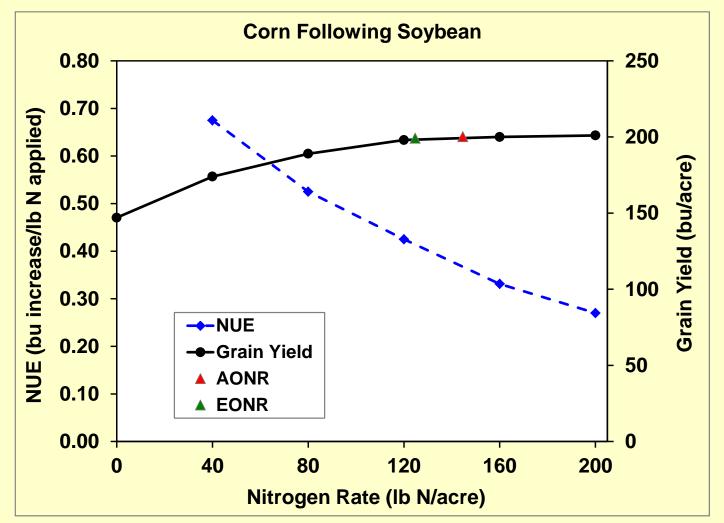
	Er	a	For
	1960	2000	2000
Grain Yield (bu/acre)	134b	224a	+67%
Total Plant N (lb/acre)	159b	190a	+19%
Grain N (lb/acre)	113b	138a	+22%
Grain N Harvest Index	0.71a	0.73a	
Harvest Index (%)	49a	53a	
Grain (bu/lb total plant N) <i>(IE)</i>	0.84b	1.18a	+40%
Grain N Concentration (%DM)	1.61a	1.23b	-24%
Grain N (lb N/bu) at 15%	0.77a	0.59b	-24%


Inverse of Internal Efficiency (IE) gives the per bushel N factor times yield: 1.2 (1960) and 0.8 (2000). Woli et al.

Corn Era Plant Components Nitrogen Concentration


IOWA STATE UNIVERSITY Extension and Outreach

Corn Era Plant Components Nitrogen Content



IOWA STATE UNIVERSITY Extension and Outreach

Corn Era Comparison: 1960 vs. 2000 Nitrogen Uptake Timing has Not Changed

Nitrogen Use Efficiency (NUE) and Yield With Increasing N Rate

2006-2007 - 14 Iowa Sites. Yield/Agronomic Efficiency. Sawyer and Barker, ISU.

Corn Nitrogen

- Corn plant N uptake timing by silking (R1) is still around 70%
- Corn plant total N is around 1 lb N/bu
- Corn grain N concentration is near 0.53 lb N/bu at 15.5% moisture (1.12% N in DM)
 - Example for 240 bu/acre yield
 - 127 lb N/acre in corn grain
- Grain N removal is less than suggested MRTN rates or most profitable N rate ranges

Nitrogen Use and Water Quality Corn Grain N Removal vs. N Application


- Example for state of lowa
 - * 1976-1980 vs. 2014-2018
 - *107 bu/acre vs. 194 bu/acre state corn yield
 - *87 lb N/acre vs. 103 lb N/acre in grain harvest
 - * 120 lb N/acre vs. 158 lb N/acre fertilizer use
 - 0.73 ratio vs. 0.65 ratio
 (grain N removal divided by applied N)
 - 0.82 lb N/bu vs. 0.56 lb N/bu
 - 85% N to planted corn acres per lowa ground water protection act reporting method
 - USDA-NASS lowa corn yield

Nitrogen Use and Water Quality

- Increasing N rates in reaction to high corn yields will reduce profitability and worsen environmental issues like nitrous oxide emission and nitrate-N in water systems
- A baseline nitrate-N
- Reasons why infield 4R N practices have limits for water quality improvement

IOWA STATE UNIVERSITY

Extension and Outreach

Iowa Nutrient Reduction Practices

	Practice	tice Comments		% Corn Yield Change**
		Average (SD*)	Average (SD*)	
		Moving from fall to spring pre-plant application	6 (25)	4 (16)
	Timing	Spring pre-plant/sidedress 40-60 split Compared to fall-applied	5 (28)	10 (7)
		Sidedress – Compared to pre-plant application	7 (37)	0 (3)
		Sidedress – Soil test based compared to pre-plant	4 (20)	13 (22)**
ement	Source	Liquid swine manure compared to spring-applied fertilizer	<mark>4 (</mark> 11)	0 (13)
	Source	Poultry manure compared to spring-applied fertilizer	-3 (20)	-2 (14)
Nitrogen Management	Nitrogen Application Rate	Nitrogen rate at the MRTN (0.10 N:corn price ratio) compared to current estimated application rate. (ISU Corn Nitrogen Rate Calculator – http://extension.agron.iastate.edu/soilfertility/nrate.aspx can be used to estimate MRTN but this would change Nitrate-N concentration reduction)	10	-1
	Nitrification Inhibitor	Nitrapyrin in fall – Compared to fall-applied without Nitrapyrin	9 (19)	6 (22)
	Cover Crone	Rye	31 (29)	-6 (7)
	Cover Crops	Oat	28 (2)	-5 (1)
	Living Mulches	e.g. Kura clover – Nitrate-N reduction from one site	41 (16)	-9 (32)

SP 0435A

Corn Nitrogen Rate Determination

- Setting an N application rate by starting with corn yield goal is a poor system
 - Yield does not equate to N rate need

High Yield Environments in Iowa					
Rotation	No.	EONR	Yield		
lb N/acre bu/acre					
SC	40	150	233		
CC 13 183 232					
EONR at 0.10 N:Corn price ratio.					
J. Sawyer and	d D. Bai	rker. ISU.			

Exploring a Regional Approach to Nitrogen Rate Guidelines (MRTN and CNRC)

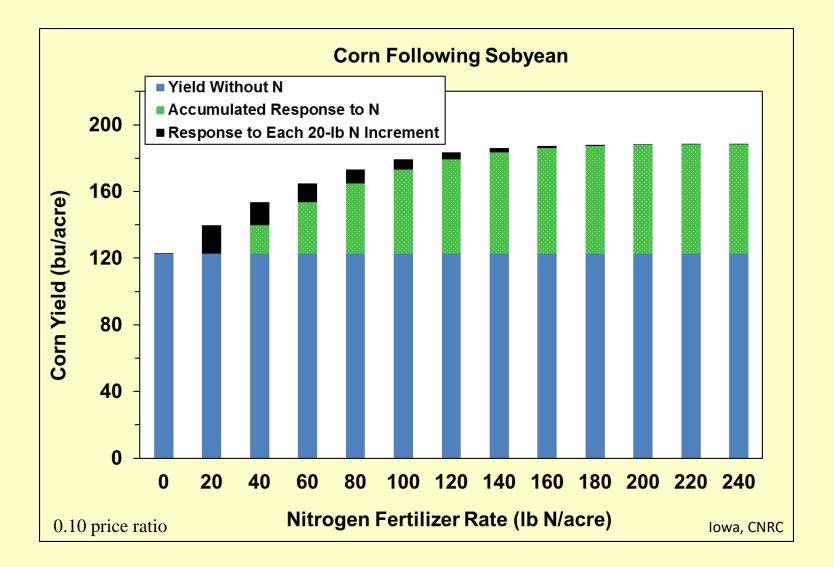
- Diverse N rate guideline systems across states in the Midwest USA
- Cross-state programs
- Volatile N fertilizer and corn prices
- Lack of optimum N rate relationship with yield
 - Yield-based N rates greater than economic optimum with high yields and too low rates on less productive soils

MRTN Development Timeline

- Discussions in 2004
- Initial N response trial database completion in 2005
- Web based Corn N Rate Calculator (CNRC) in 2005
- Regional extension publication in 2006

Corn Nitrogen Rate Calculator http://cnrc.agron.iastate.edu/

IOWA STATE UNIVERSITY Extension and Outreach



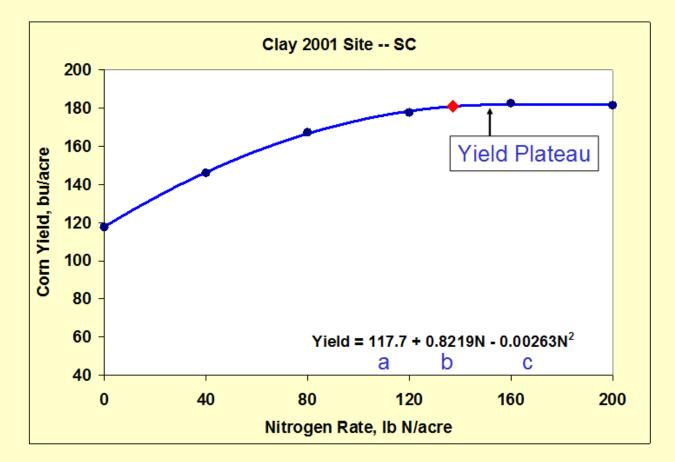
MRTN/CNRC - Database Driven Approach

- Corn response data from many recent research-based N rate trials
 - 2,008 trials
 - > 90% less than 15 years old
 - Iowa: 411 trials
- Analytical/predictive method to determine economic response and most profitable N rates directly from research trials

Current Data \rightarrow **N Rate Guidelines**

Diminishing Return to N Application

Steps in MRTN Computation

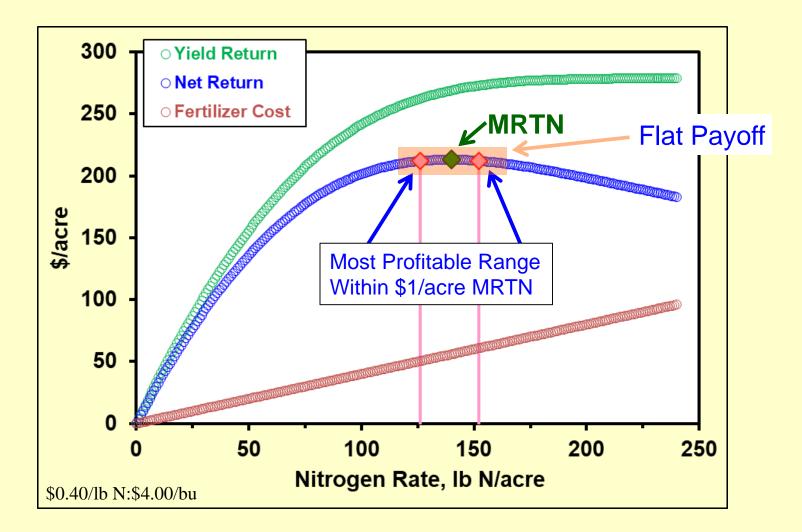

- 1. Collect N response trial site data
- 2. Observe shape of N response data
- 3. Fit regression equation to each trial data
- 4. Compile database of site response equations for CC and SC

Ext. Public. PM 2015

Steps in MRTN Computation

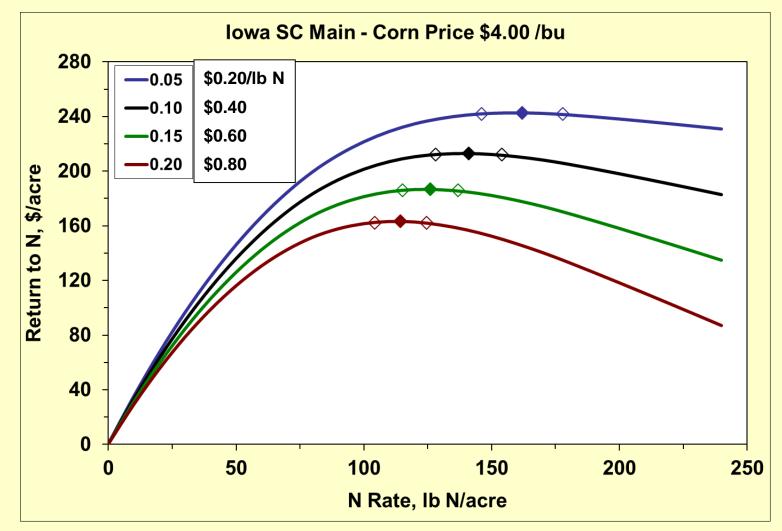
• Corn N rate response trial example

Steps in MRTN/CNRC Computation


- 5. Calculate by 1-lb N rate increments: gross yield return, fertilizer cost, net return to N (RTN) using the regression equations
- 6. For user specified dataset (C<u>C</u>, S<u>C</u>, state, or substate), N and corn prices -- average across the RTN for selected response trials
- 7. The N rate with largest average RTN is the MRTN rate, with the most profitable range being the N rates within \$1.00/acre of the maximum RTN

STATE UNIVERSITY

Extension and Outreach


Ext. Public. PM 2015

Net Return Determines MRTN Rate and Profitable Range

IOWA STATE UNIVERSITY Extension and Outreach

Effect of Prices on MRTN and Most Profitable N Rate Range

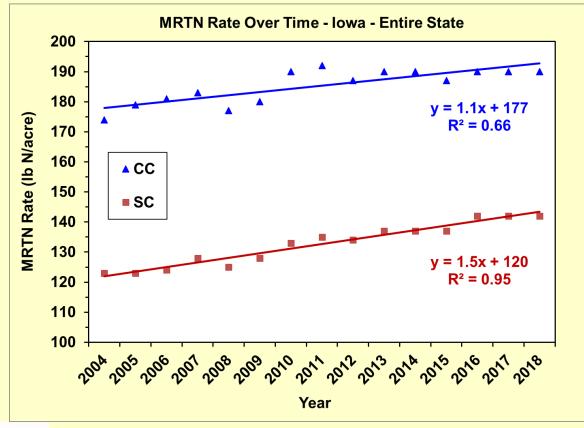
IOWA STATE UNIVERSITY Extension and Outreach

Nitrogen Rates for Corn in Iowa

Maximum Return to Nitrogen (MRTN) rate and Most Profitable Rate Range from the Corn Nitrogen Rate Calculator (CNRC).

Price	Corn Following Soybean		Corn Foll	lowing Corn			
Ratio ¹	Rate	Range	Rate	Range			
\$/lb N:\$/bu	\$/lb N:\$/bu lb N/acre						
<u>MAIN Iowa</u>	MAIN Iowa Region						
0.10	140	126 - 153	188	174 - 204			
<u>SEIA (Soil F</u>	<u>SEIA (Soil Regions 17, 21, 22)</u>						
0.10	153	138 - 168	201	185 - 22 0			
¹ Price per lb N divided by the expected corn price. For example,							

N at \$0.40/lb N and corn at \$4.00/bu is a 0.10 price ratio. Corn held at \$4.00/bu for all price ratios.



Strengths of MRTN Approach

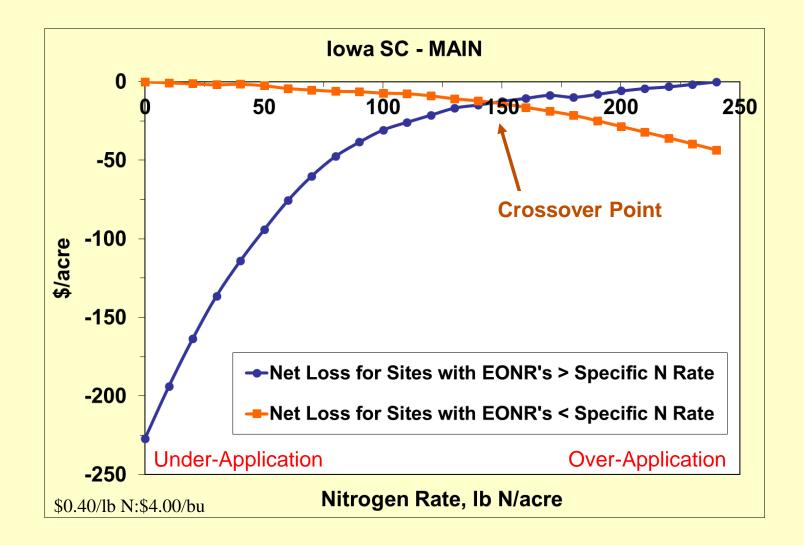
- Straightforward computation
- Based directly on N rate research
- Can use a variety of N rate trials
- Based on economic profitability
 Not derived from yield level, but actual yield response which pays for the N applied
- Directly provides CC and SC rate guidelines
 No reliance on inconsistent "soybean credit"
- Incorporates temporal and spatial variability
 Documents data used for guidelines

Strengths of MRTN Approach

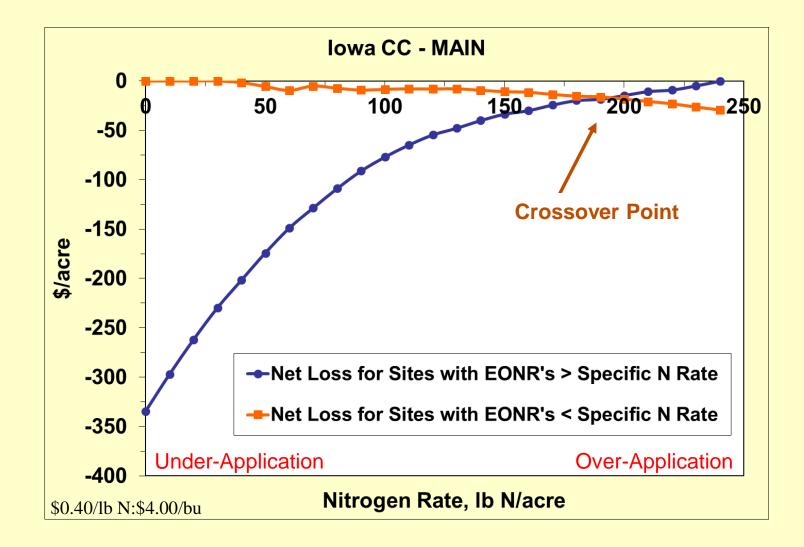
- Easy to add new response trials
 - Keeps rate guidelines current with production practices and climatic conditions

IOWA STATE UNIVERSITY Extension and Outreach

J.E. Sawyer, ISU Agronomy Extension


Strengths of MRTN Approach

- Provides opportunity for user input and N rate adjustment
 - Rotation
 - Fertilizer and corn price
 - Profitable N rate range
 - $\blacksquare LOW \leftrightarrow MRTN \leftrightarrow HIGH$
 - Farmer experience and attitude toward risk
 - Capitol allocation
 - Water and air quality
 - Local research information
 - Seasonal expectation


MRTN and N Risk Management

- Although you may want to be 100% certain of N sufficiency, being that certain is not most profitable
 - The risk with lower N rates is decreased profitability due to lost yield
 - The risk with higher N rates is decreased profitability and environmental concerns due to unneeded N
 - Most profitable N rate range helps "protect" these risks

MRTN and N Risk Management

MRTN and N Risk Management

Questions?

This institution is an equal opportunity provider. For the full non-discrimination statement or accommodation inquiries, go to <u>www.extension.iastate.edu/diversity/ext</u>.

