#### SPATIAL RESPONSE OF CORN TO BANDED ZINC SULFATE FERTILIZER IN IOWA

A. Bickel and R. Killorn Department of Agronomy Iowa State University Ames, Iowa

#### Abstract

The solubility of zinc (Zn) decreases as pH increases. There are soil associations that contain high pH spots within fields where the surrounding soils' pHs are slightly acid. It is reasonable to expect that Zn availability, due to a difference in solubility, is different in the two areas. The objectives of this study were to find corn (Zea mays L.) grain yield responses to Zn fertilizers within fields and to define the soil characteristics in responsive areas. The study was conducted at twelve sites, two in 1998, five in 1999 and five in 2000. Treatments were 0 and 5 lb Zn/a applied to field-length strips of corn and replicated four times. Zinc was applied 2 in. to the side and 2 in, below the seeds during planting. Multiple soil series were identified at each site and treatment pairs were located within them. Soil samples were analyzed for Zn, phosphorus, potassium, organic matter and pH. Grain yields were measured along with whole plant (V6 to V10 growth stage) and grain Zn content and uptake. In this study, significant yield decreases occurred on some soils due to Zn application. Negative yield responses occurred on soils in one of two situations; on soils with high soil test Zn (Zn > 0.8 ppm) or on soils with low soil test Zn(Zn  $\leq 0.8$  ppm) and high pH (pH>= 7). Based on these results this type of Zn application would have little agronomic benefit in Iowa. Finally, corn yield responses to variable Zn application throughout a field were not unpredictable.

#### Introduction

Field studies have been conducted to define corn response to Zn fertilization (Mallarino and Webb, 1995: Carsky and Reid, 1990; Viteri-Arriola, 1984; Boawn, 1973; Marens et al., 1973; Brown and Krantz, 1966; Langin, et al., 1962). In most of this research Zn was applied by broadcasting followed by incorporation. However, banding is an efficient way to uniformly apply the small amounts of Zn required per acre. Furthermore, banding is regaining popularity especially in conservation tillage systems.

The solubility of zinc (Zn) decreases as soil pH increases (Lindsay, 1978). In the western portion of the corn belt there are several soil associations that contain high pH spots within fields where the surrounding soils' pHs are slightly acid. It is reasonable to expect that Zn availability, due to a difference in solubility, is different in the two areas. Today, Global Positioning Systems (GPS) and variable rate fertilizer application systems allow producers to apply fertilizers at different rates throughout a field. This would be economical if producers could save money by applying less fertilizer. Little, if any, research has been completed to look at differential responses of corn to Zn across different soil series within a field.

The objectives of this study were to find grain yield responses to Zn fertilizers within fields, and to define the soil characteristics in responsive areas thereby providing a basis for differential Zn applications.

## Materials and Methods

The experiment was conducted from 1998 through 2000. There were two sites in 1998 (1 & 2), five (3 - 7) in 1999, and five (8-12) in 2000 (Figure 1). The sites were located in crop producers' fields or on outlying research farms operated by Iowa State University. Treatments, paired with and without Zn, were applied to the corn in long strips (10 ft. or 15 ft. wide and 500 ft to 1000 ft. long) with four to six replications. The widths and lengths of strips and number of replications varied due to the producer's equipment and the allotted experiment area.

Zn was applied as zinc sulfate (36% Zn) at a rate of 5 lb Zn/a in a band 2 in. below and 2 in. to the side of the seed. The banding attachment was also pulled through the soil on the control strips even though no fertilizer was applied. Approximately 30% of the Zn in the fertilizer material was water-soluble. Zinc sulfate was broadcast without incorporation after planting at site one in 1998. The tillage practices and hybrids used at each site were those use by the cooperators (Table 1).

All of the experimental sites were located in North Central and Western Iowa (Figure 1). Cultural information for each site is listed in Table 1.

### **Soil Series**

Soil series were identified using county soil surveys (Braham, 1989; Dankert et al., 1981; Dideriksen, 1992; Koppen, 1975; Lensch, 1989), followed by field verification to distinguish calcareous from non- calcareous soils. This was accomplished by dropping 1 N HCl on bare soil at 3-ft. intervals and watching for effervescence. If effervescence was not different at a site, the strips were divided into 50 ft. sections.

Next, the sections and/or soil series were divided into paired treatment strips. One strip from each pair was then randomly selected to receive Zn fertilizer. Each treatment strip was then divided into plots that aligned with the corresponding treatment pair (Figures 2a and 2b). When the paired plots did not contain the same soil series they were considered "blank areas" and were not sampled (Figure 2b). The plot length was kept constant at each site but varied among sites due to the space available within soil series (Figure 2a and 2b). Some soil series had a larger area than others so the number of plots per soil series was unbalanced. No more than four plots per soil series were chosen within each set of paired strips. These four plots were randomly selected.

#### Soil Samples

Soil samples were taken every 25 ft. to a depth of 6 in. in the strips where no Zn was applied immediately after planting. Samples were ground using a stainless steel grinder to avoid Zn contamination, and analyzed for organic matter (Walkley, and Black, 1934), pH (1:1 slurry), Olsen phosphorus (Olsen, et al., 1954), potassium (Carson, 1980), and DTPA extractable Zn(Kahn, 1979; Kahn, and Soltanpour, 1978; Lindsay, and Norvell, 1978). The DTPA extracts were analyzed for Zn using an atomic absorption spectrometer.

## Plants

Whole, above ground plant samples of the corn were taken when the plants reached the V6-V10 growth stage (Hanway, 1982). Two plant samples were taken from each plot within each treatment strip. The plant samples were ground in a stainless steel grinder, digested in sulfuric acid and 50% hydrogen peroxide (Hach, 1989), and analyzed for Zn using an atomic absorption spectrometer. Zinc uptake was also calculated.

## Grain

Grain was harvested from the two middle rows of each plot. Yields were adjusted to 15.5% moisture content. The grain samples were ground in a stainless steel mill, digested in sulfuric acid and 50% hydrogen peroxide (Hach, 1989), and analyzed for Zn concentration using an atomic absorption spectrometer. Zn uptake was also calculated.

# Soil Test Interpretation

The P, K, and Zn soil test interpretations (Table 2) are those of Iowa State University (ISU) Extension (Voss et al., 1999). The pH and organic matter (OM) interpretations were more subjective. A high pH was considered 7.0 and above. The following scale was used to define high, medium, and low organic matter: < 1% is low, 1-4% is medium/adequate, > 5 % is high.

# Statistical Analysis

Statistical analyses were done using SAS (SAS, 1996). The model at each site was an unbalanced, split plot. A probability level of 0.05 or less was used to declare significance.

# **Results and Discussion**

Responses to Zn differed among sites (P>F=<0.01) so each site was analyzed separately. The data were sorted by site and soil series and then divided into groups of different pH and Zn concentrations (Table 3). The soil series at the sites and their classifications are shown in Table 4. The soil analysis results sorted by site and soil series are in Table 5.

Soil test Zn varied among locations and among soils within locations (Table 5). At some sites there were soil series that were both low and high in Zn. Sixtyone comparisons are included in the data and 30 were high in Zn while 31 were low.

The most common result was that Zn application had no effect on grain yield (Table 6). There were six sites where grain yield was significantly affected on one or more soils. However there were only nine significant grain yield responses to Zn application in the 61 comparisons. Grain yield decreased in seven of these instances. The magnitude of the decreases ranged from about 4 bu/a to 35 bu/a. This is somewhat surprising because soils tests (Table 5) for Zn were low (less than 0.8 ppm DTPA-extractable Zn) about half of the time, 31 of 61 comparisons. The two positive responses were 35 bu/a on a Webster soil at site 5 and 9 bu/a on a Nicollet soil at site 12. The negative responses occurred in soils testing both low and high in Zn while the positive responses both occurred on soils testing high in Zn.

#### Conclusions

Several conclusions can be stated based upon the data presented here. First, Iowa soils vary in the amount of soil test Zn that they contain. Second, there seems to be little predictable chance of a corn grain yield response to addition of Zn fertilizer. The method of application used in this study may have affected this result. Unfortunately the study does not provide data that will allow a definite conclusion based upon the method of application. Third, there are times when application of Zn may result in a decrease in corn grain yield. This suggests that application of zinc to soils that test high (greater than 0.8 ppm DTPA extractable Zn) as "insurance" carries a risk. Fourth, the results from this study suggest that the soil test currently used for Zn in Iowa is not a good predictor of the probability of a positive corn grain yield response to addition of Zn fertilizer. Fifth, there was no strong relationship between yield response to applied Zn and soil pH. These data strongly suggest that Zn fertilizer should not be applied to Iowa soils that have high pH.

#### References

Branham, C. 1989. Soil survey of Potawattamie County, Iowa. USDA, SCS.

- Bugabee, G., and C. Frink, 1995. Phosphorus and zinc fertilization of corn grown in a Connecticut soil. Conn. Ag. Exp. Stn., New Haven, Conn.
- Boawn, L.C. 1973. Comparison of Zinc Sulfate and Zinc EDTA as Zinc Fertilizer Sources. Soil Sci. Soc. Amer. Proc. 37:11-115.
- Brown, L.C., and B.A. Krantz, 1966. Source and placement of zinc and phosphorus for corn (Zea mays L.) Soil Sci. Soc. Amer. Proc. 30:86-89.
- Carsky, R.J., and W.S. Reid, 1990. Response of corn to zinc fertilization. J. Prd. Agric., Vol. 3 4:502-507.
- Carson, P.L. 1980. Recommended potassium test. P.12-13. In W.C. Dahnke, (ed.). Recommended chemical soil test procedures for the North Central Region. North Central Region Publication 221 (revised). N.D. Agri. Exp. Stn., Fargo, N.D.
- Dankert, W. N., L.T. Hanson, and R.L. Reckner. 1981. Soil survey of O'Brien County, Iowa. USDA, SCS.
- Dideriksen, R. 1992. Soil survey of Wright County, Iowa.USDA, SCS.
- Hach Company. 1989. Instruction manual Digesdahl Digestion Apparatus Model 23130-20, -21. Office, Loveland, Colorado.
- Hanway, J. 1982. How a corn plant develops. Special Reqest No. 48. Iowa State Univ., Ames, IA.
- Jones, J.B., B. Wolf, and H.A. Mills. 1991. Plant Analysis Handbook. 127. Micro-Macro Publishing. Athens, Georgia.
- Kahn, A. 1979. Distribution of DTPA-extractable Fe, Zn, and Cu in the soil particle-size fractions. Comm. Soil Sci. Plant Anal. 10:1211-1218.
- Kahn, A., and P.N. Soltanpour. 1978. Effect of wetting and drying on DTPA-extractable Fe, Zn, Mn, and Cu in soils. Comm. Soil Sci. Plant Anal. 9:193-202.
- Koppen, M.P. 1975. Soil survey of Webster County, Iowa. USDA, SCS.
- Langin, E.J., R.C. Ward, R.A. Olson, and H.F. Rhoades. 1962. Factors responsible for poor response of corn grain and sorguhm to phosphorus fertilization: II. Lime and P placement effects on P-Zn relations. Soil Sci. Soc. Proc. 1962: 574-578.

Lensch, R. 1989. Soil survey of Hancock County, Iowa.USDA, SCS.

Lindsay, W.L., and W.A. Norvell. 1978. Development of DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Amer. J. 42:421-428.

- Lindsay, W.L. 1979. Chemical Eqilibrium in Soils. John Wiley and Sons, New York. 210-219.
- Lineham, D.J., et al., 1989. Seasonal changes in Cu, Zn, and Co concentrations in soil in the root-sone of barley (*Hordeum vulgare* L.). J. Soil Sci. 40: 103-115.
- Mallarino, A.P., and J.R. Webb. 1995. Long-term evaluation of phoshorus and zinc interaction in corn. J. Prod. Agric. 8:1:52-55.
- Martens, D.C., and G.W. Hawkins, and G.D. McCarty. 1973. Field response of corn to ZnSO<sub>4</sub> and Zn-EDTA placed with the seed. Agron. J. 65: 135-136.
- Mortvedt, J.J., 1992. Crop response to level of water-soluble zinc in granular zinc fertilizers. Fert. Res. 33:249-255.
- Olsen, S.R., C.V. Cole, F.S. Watanabe, and L.A. Dean. 1954.Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939. U.S. Government Printing Office, Washington D.C.
- Rehm, G.W., R.C. Sorensen, and R.A. Wiese. 1981. Application of phosphorus, potassium, and zinc to corn grown for grain and silage: Early growth and yield. Soil Sci. Soc. Am. J. 45:523-528.
- SAS Institute Inc. 1996. SAS Software Version 6.1. Office, Cary, NC
- Sawyer, J.E., A.P. Mallarino, and R. Killorn. 1999. Interpretation of soil test results. Iowa State University Cooperative Extension Service. PM 1310. Ames, IA.
- Terman, G.L., and P.M. Giordano, and N.W. Christensen. 1975. Corn hybrid yield effects on phosphorus, manganese, and zinc absorption. Agron. J. 67: 182-184.
- Viteri-Arriola, F. 1984. The response of two corn hybrids to application of row fertilizer with and without zinc. Iowa State University Thesis.
- Voss, R.D., J.E. Sawyer, A.P. Mallarino, and R. Killorn. 1999. General guide for crop nutrient recommendations in Iowa. PM 1688, Iowa State Univ. Ames, IA.
- Walkley, A., and I.A. Black. 1934. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37:29-37.
- Webb, J.R. 1979. The Zinc Situation in Iowa. Iowa State Univ. Coop. Ext. Serv. Publ. EC-1398m.
- Webb, J.R. 1984. Row Fertilization of Corn. Annual progress report. Iowa State Univ. Coop. Ext. Serv. Publ. ORC84-14,22:8-9.
- Webb, J.R. 1984. Phosphorus-Zinc Fertilizers for Corn. Annual progress report. Iowa State Univ. Coop. Ext. Serv. Publ. ORC84-14,22:9-11.

|      |                   |      |               | Strip  |           | Plant     | Harvest    |
|------|-------------------|------|---------------|--------|-----------|-----------|------------|
| Site | Producer          | Year | County        | length | Hybrid    | Date      | Date       |
|      |                   |      |               | ft     |           |           |            |
| 1    | Producer          | 1998 | Wright        | 900    | P 3730    | 5/4/1998  | 10/10/1998 |
| 2    | Producer          | 1998 | Hancock       | 1260   | P 3489    | 5/5/1998  | 10/22/1998 |
| 3    | ISU Research Farm | 1999 | Pottawattamie | 525    | GH9230BT  | 5/14/1999 | 9/28/1999  |
| 4    | ISU Research Farm | 1999 | O'Brien       | 600    | DK 477    | 5/11/1999 | 11/25/1999 |
| 5    | Producer          | 1999 | Webster       | 650    | G 8704    | 5/5/1999  | 11/26/1999 |
| 6    | ISU Research Farm | 1999 | Hancock       | 490    | P 3563    | 5/4/1999  | 10/12/1999 |
| 7    | Producer          | 1999 | Hancock       | 1000   | P 3489    | 5/4/1999  | 10/14/1999 |
| 8    | ISU Research Farm | 2000 | O'Brien       | 600    | DK 537    | 4/28/2000 | 10/12/2000 |
| 9    | ISU Research Farm | 2000 | Hancock       | 500    | P3563     | 4/25/2000 | 9/29/2000  |
| 10   | Producer          | 2000 | Grundy        | 600    | DK C57-72 | 4/14/2000 | NA         |
| 11   | Producer          | 2000 | Grundy        | 600    | M2767     | 4/14/2000 | NA         |
| 12   | Producer          | 2000 | Hancock       | 1200   | P3489     | 4/25/2000 | 10/6/2000  |

Table. 1 Zinc site information.

DK = DeKalb, G = Garst, GH = Golden Harvest, M= Mycogen, P = Pioneer

| Table 2. | Iowa State | University | Extension | Soil Inter | pretations. |
|----------|------------|------------|-----------|------------|-------------|
|          |            |            |           |            |             |

| sõil test, .* | low                 | marginal   | adequate  | high  |  |  |  |  |  |
|---------------|---------------------|------------|-----------|-------|--|--|--|--|--|
|               | mg kg <sup>-1</sup> |            |           |       |  |  |  |  |  |
| Olsen P       | < 8                 | na         | 8 to 14   | > 14  |  |  |  |  |  |
| K             | < 81                | na         | 81 to 120 | > 120 |  |  |  |  |  |
| Zn            | 0 to 0.4            | 0.5 to 0.8 | na        | > 0.8 |  |  |  |  |  |

na = not available

Table 3. Soil Zn content and pH parameters used in statistical analysis.

| Soil                   | Para  | ımeter |
|------------------------|-------|--------|
| charactersitic         | 1     | 2      |
| Zn mg kg <sup>-1</sup> | <=0.8 | >0.8   |
| pH                     | <7    | >=7    |

| Series Name | Classification                                                     |
|-------------|--------------------------------------------------------------------|
| Canisteo    | fine-loamy, mixed, superactive, calcareous, mesic Typic Endoaquoll |
| Clarion     | fine-loamy, mixed, superactive, mesic Typic Hapludoll              |
| Exira       | fine-silty, mixed, superactive, mesic, Typic Hapludoll             |
| Galva       | fine-silty, mixed, superactive, mesic Typic Hapludoll              |
| Harps       | fine-loamy, mixed, superactive, mesic Typic Calciaquoll            |
| Marshall    | fine-silty, mixed, superactive, mesic Typic Hapludoll              |
| Muscatine   | fine-silty, mixed, mesic Aquic Hapludoll                           |
| Nicollet    | fine-loamy, mixed, superactive, mesic Aquic Hapludoll              |
| Okoboji     | fine, smectitic, superactive, mesic Cumulic Vertic Endoaquoll      |
| Primghar    | fine-silty, mixed, superactive, mesic Aquic Hapludoll              |
| Ransom      | fine-silty, mixed, superactive, mesic Aquic Hapludoll              |
| Sac         | fine-silty, mixed, superactive, mesic Typic Hapludoll              |
| Tama        | fine-silty, mixed, superactive, mesic Typic Agriudoll              |
| Webster     | fine-loamy, mixed, superactive, mesic, Typic Endoaquoll            |

Table 4. Classification of soil series found in this study.

| Site | Year | Soil     | Zn   | P    | K                | pН   | OM  |
|------|------|----------|------|------|------------------|------|-----|
|      |      |          | -    | mg   | kg <sup>-1</sup> |      | %   |
| 1    | 1998 | Nicollet | high | 26.7 | 239              | low  | 5.1 |
|      |      | Webster  | high | 21.5 | 214              | high | 7.6 |
| 2    |      | Canisteo | high | 17.0 | 248              | high | 6.1 |
| 3    | 1999 | Exira    | high | 40.3 | 312              | low  | 3.6 |
|      |      |          | high | 60.6 | 350              | high | 3.9 |
|      |      | Marshall | low  | 28.0 | 201              | low  | 2.5 |
|      |      |          | low  | 29.0 | 198              | high | 3.0 |
|      |      |          | high | 66.0 | 290              | high | 3.5 |
| 4    |      | Primghar | low  | 24.7 | 176              | low  | 4.9 |
|      |      | -        | low  | 26.8 | 180              | high | 4.9 |
|      |      |          | high | 30.1 | 173              | low  | 4.9 |
|      |      | Ransom   | low  | 19.6 | 155              | low  | 4.7 |
|      |      |          | low  | 28.5 | 183              | high | 4.8 |
|      |      | Sac      | low  | 16.4 | 154              | low  | 4.4 |
|      |      |          | low  | 27.4 | 166              | high | 3.7 |
|      |      |          | low  | 16.4 | 162              | low  | 4.5 |
| 5    |      | Canisteo | high | 23.8 | 168              | high | 7.8 |
|      |      |          | high | 13.0 | 176              | high | 8.5 |
|      |      | Clarion  | high | 35.1 | 145              | low  | 5.9 |
|      |      |          | high | 27.8 | 159              | high | 6.8 |

Table 5. Soil Characteristics sorted by site, soil series, soil test Zn, and pH.

|    |      | Nicollet  | high | 43.2         | 157 | high | 6.4  |
|----|------|-----------|------|--------------|-----|------|------|
|    |      | Webster   | high | 39.2         | 212 | low  | 6.8  |
|    |      |           | high | 33.0         | 182 | high | 7.2  |
| 6  |      | Canisteo  | low  | 13.0         | 178 | high | 8.0  |
|    |      | Nicollet  | low  | 11.7         | 157 | low  | 4.7  |
|    |      |           | low  | 10.5         | 178 | high | 5.4  |
|    |      | Webster   | low  | 14.9         | 206 | high | 6.8  |
|    |      |           | high | 29.0         | 245 | low  | 7.0  |
| 7  |      | Canisteo  | low  | 10.2         | 189 | high | 7.9  |
|    |      |           | high | 12.3         | 221 | high | 7.6  |
|    |      | Harps     | low  | 23.3         | 192 | high | 5.2  |
|    |      | Nicollet  | low  | 32.0         | 162 | low  | 5.3  |
|    |      |           | low  | 37.0         | 191 | high | 5.7  |
|    |      |           | high | 52.0         | 254 | high | 7.7  |
|    |      | Okoboji   | low  | 2.3          | 173 | high | 9.2  |
|    |      |           | high | 9.5          | 185 | high | 8.7  |
| 8  | 2000 | Galva     | low  | 10.4         | 155 | low  | 4.8  |
|    |      | Primghar  | low  | 7.0          | 142 | low  | 4.8  |
|    |      |           | high | 8.0          | 139 | low  | 4.8  |
|    |      |           | low  | 14.3         | 143 | high | 4.9  |
|    |      | Sac       | low  | 3.0          | 135 | low  | 4.0  |
| 9  |      | Canisteo  | low  | 14.0         | 140 | low  | 6.8  |
|    |      |           | high | 29.7         | 171 | low  | 6.6  |
|    |      | Clarion   | low  | 14.5         | 131 | low  | 3.8  |
|    |      |           | high | 17.9         | 139 | low  | 4.2  |
| 10 |      | Muscatine | low  | 22.9         | 295 | low  | 3.6  |
|    |      |           | low  | 19.7         | 289 | high | 3.6  |
|    |      |           | high | 21.5         | 294 | low  | 4.4  |
|    |      |           | high | 47.0         | 226 | high | 3.7  |
|    |      | Tama      | low  | 19.0         | 239 | low  | 2.8  |
|    |      |           | high | 35.6         | 322 | low  | 2.8  |
| 11 |      | Muscatine | low  | 16.9         | 218 | low  | 8.3  |
|    |      |           | low  | 1 <b>9.7</b> | 263 | high | 5.6  |
|    |      |           | high | 12.2         | 202 | low  | 12.2 |
|    |      |           | high | 15.5         | 217 | high | 4.4  |
|    |      | Tama      | low  | 12.9         | 207 | low  | 2.9  |
|    |      |           | high | 21.0         | 230 | low  | 13.0 |
| 12 |      | Canisteo  | low  | 8.5          | 183 | high | 7.2  |
|    |      |           | high | 11.0         | 245 | high | 7.8  |
|    |      | Harps     | low  | 8.3          | 121 | high | 9.8  |
|    |      | Nicollet  | low  | 15.0         | 161 | low  | 5.3  |
|    |      |           | high | 13.0         | 141 | low  | 5.3  |
|    |      |           | low  | 8.0          | 157 | high | 8.7  |

high Zn = > 0.8 ppm, low Zn = < = 0.8 ppm, high pH = > = 7, low pH = <7

|      |          | Indices   |      | Yield    | Plant Zn | Plant Zn  | Grain Zn | Grain Zn |
|------|----------|-----------|------|----------|----------|-----------|----------|----------|
|      |          | Soil test | Soil | response | conc.    | uptake    | conc.    | uptake   |
| Site | Soil     | Zinc      | pН   |          |          | w/Zn-no Z | n        |          |
|      |          |           |      | bu/a     | ppm      | g Zn/g    | ppm      | lb/a     |
| 1    | Nicollet | high      | low  | -4.3     | -2       | ns        | ns       | ns       |
|      | Webster  | high      | high | ns       | ns       | ns        | ns       | ns       |
| 2    | Canisteo | high      | high | ns       | 3        | ns        | ns       | ns       |
| 3    | Exira    | high      | low  | ns       | ns       | ns        | ns       | ns       |
|      |          | high      | high | ns       | ns       | ns        | ns       | ns       |
|      | Marshall | low       | low  | ns       | 11       | ns        | ns       | ns       |
|      |          | high      | low  | ns       | ns       | ns        | 0.06     | ns       |
|      |          | high      | high | -32      | 8        | 0.04      | ns       | -4.5     |
| 4    | Primghar | low       | low  | ns       | ns       | ns        | ns       | ns       |
|      |          | low       | high | ns       | ns       | ns        | ns       | ns       |
|      |          | high      | low  | ns       | 15       | ns        | ns       | ns       |
|      | Ransom   | low       | low  | ns       | ns       | ns        | ns       | ns       |
|      | Sac      | low       | low  | ns       | 12       | 0.01      | 2        | ns       |
|      |          | high      | low  | ns       | ns       | ns        | ns       | ns       |
|      |          | low       | high | ns       | ns       | ns        | ns       | ns       |
| 5    | Canisteo | high      | high | ns       | 3        | 0.01      | ns       | ns       |
|      | Clarion  | high      | low  | ns       | ns       | ns        | ns       | ns       |
|      |          | high      | high | ns       | ns       | ns        | ns       | ns       |
|      | Nicollet | high      | low  | ns       | ns       | ns        | 1        | 4        |
|      | Webster  | high      | low  | ns       | ns       | ns        | ns       | ns       |
|      |          | high      | high | 35       | ns       | ns        | ns       | ns       |
| 6    | Canisteo | low       | high | ns       | ns       | ns        | ns       | ns       |
|      | Nicollet | low       | low  | ns       | ns       | ns        | 0.03     | 0.03     |
|      |          | low       | high | ns       | ns       | 0.01      | 4        | 4        |
|      | Webster  | high      | low  | ns       | ns       | ns        | ns       | ns       |
|      |          | low       | high | ns       | ns       | ns        | ns       | ns       |
| 7    | Canisteo | low       | high | ns       | 4        | ns        | ns       | ns       |
|      |          | high      | high | ns       | 0.05     | ns        | ns       | ns       |
|      | Harps    | low       | high | -22.5    | ns       | 0.02      | -4       | ns       |
|      | Nicollet | low       | low  | ns       | ns       | ns        | ns       | ns       |
|      |          | low       | high | ns       | ns       | ns        | ns       | ns       |
|      |          | high      | high | ns       | 6        | ns        | ns       | ns       |
|      | Okoboji  | low       | high | -15      | -5       | -0.02     | -4       | -5       |
|      |          | high      | high | ns       | ns       | ns        | -5       | -4       |
| 8    | Galva    | low       | low  | ns       | ns       | ns        | ns       | ns       |
|      | Primghar | low       | low  | ns       | -11      | -0.0086   | -7       | ns       |
|      |          | high      | low  | ns       | ns       | ns        | ns       | ns       |

Table 6. Responses in yield, plant Zn concentration and uptake and grain Zn concentration and uptake due to Zn application.

|    |           | low  | high | ns  | ns  | ns     | ns | ns |
|----|-----------|------|------|-----|-----|--------|----|----|
|    | Sac       | low  | low  | ns  | ns  | ns     | ns | ns |
| 9  | Canisteo  | low  | low  | ns  | ns  | ns     | ns | ns |
|    |           | high | low  | -11 | ns  | ns     | ns | ns |
|    | Clarion   | low  | low  | ns  | ns  | ns     | ns | ns |
|    |           | high | low  | ns  | -17 | -0.009 | ns | ns |
| 10 | Muscatine | low  | low  | ns  | ns  | ns     | ns | ns |
|    |           | low  | high | ns  | ns  | ns     | ns | ns |
|    |           | high | low  | ns  | ns  | ns     | 13 | 9  |
|    |           | high | high | ns  | ns  | ns     | ns | ns |
|    | Tama      | low  | low  | ns  | ns  | ns     | ns | ns |
|    |           | high | low  | ns  | ns  | ns     | ns | ns |
| 11 | Muscatine | low  | low  | ns  | ns  | ns     | ns | ns |
|    |           | low  | high | ns  | ns  | ns     | ns | ns |
|    |           | high | low  | ns  | ns  | ns     | ns | ns |
|    |           | high | high | ns  | ns  | ns     | ns | ns |
|    | Tama      | low  | low  | ns  | -24 | ns     | ns | ns |
|    |           | high | low  | ns  | -16 | ns     | ns | ns |
| 12 | Canisteo  | low  | high | ns  | ns  | -0.003 | ns | ns |
|    |           | high | high | ns  | ns  | ns     | ns | ns |
|    | Harps     | low  | high | -26 | ns  | -0.002 | ns | ns |
|    | Nicollet  | low  | low  | -12 | -19 | -0.029 | 18 | 15 |
|    |           | high | low  | 9   | -10 | 0.003  | ns | ns |
|    |           | low  | high | ns  | ns  | ns     | ns | ns |



are from 1999, and sites 9 - 12 are from 2000. Figure 1. County Locations of Zn response sites in Iowa ; sites 1 - 3 are from 1998, sites 4 - 8



sure 2. Soil map with experimental layout (a) including treatments (1 = no Zn, 2 = Zn) and atment strips (b) close up of treatment pairs and plots.

**PROCEEDINGS OF THE** 

# THIRTY-FIRST NORTH CENTRAL EXTENSION-INDUSTRY SOIL FERTILITY CONFERENCE

Volume 17

November 14-15, 2001 Holiday Inn University Park Des Moines, IA

Program Chair: Keith Reid Ontario Ministry of Ag, Food & Rural Affairs 581 Huron Street Stratford, Ontario N5A 5T8 519/271-9269

Published by:

Potash & Phosphate Institute 772 – 22<sup>nd</sup> Avenue South Brookings, SD 57006 605/692-6280